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ABSTRACT

We study the restrictions, the strict fixed points, and the strict quotients of the partition complex |�n|, which is the
�n-space attached to the poset of proper nontrivial partitions of the set {1, . . . , n}.

We express the space of fixed points |�n|G in terms of subgroup posets for general G ⊂ �n and prove a formula
for the restriction of |�n| to Young subgroups �n1 × · · · × �nk

. Both results follow by applying a general method, proven
with discrete Morse theory, for producing equivariant branching rules on lattices with group actions.

We uncover surprising links between strict Young quotients of |�n|, commutative monoid spaces, and the cotan-
gent fibre in derived algebraic geometry. These connections allow us to construct a cofibre sequence relating various strict
quotients |�n|� ∧�n

(S�)∧n and give a combinatorial proof of a splitting in derived algebraic geometry.
Combining all our results, we decompose strict Young quotients of |�n| in terms of “atoms” |�d |� ∧�d

(S�)∧d

for � odd and compute their homology. We thereby also generalise Goerss’ computation of the algebraic André-Quillen
homology of trivial square-zero extensions from F2 to Fp for p an odd prime.
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Exposition

Let �n denote the poset of proper nontrivial partitions of {1, . . . , n} and write
|�n| for its geometric realisation, the partition complex. There is a well-known equivalence
|�n| �∨(n−1)! S

n−3. However, this equivalence does not preserve the natural action of the
symmetric group �n.

The equivariant topology of the space |�n| arises in numerous contexts of interest:
its homology group H̃n−3(|�n|,Z) is closely related to the Lie representation, its desus-
pended Spanier-Whitehead dual parametrises spectral Lie algebras and Goodwillie’s
Taylor expansion of spaces, and, as we shall prove, the homology of its strict quotients
computes the cotangent fibre of certain simplicial commutative rings. Moreover, |�n| is
equivalent to the complex of non-connected graphs on n vertices, which appears in Vas-
siliev’s work on knot theory.
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In this article, we describe general fixed points, Young restrictions, and strict Young quo-

tients of |�n|. Our results for fixed points and restrictions take the form of branching rules,
i.e. equivariant equivalences to wedge sums of simpler spaces. We produce these rules
by applying a new general algorithm which takes a G-lattice P and a list of functions
(F1, . . . ,Fk) as input and gives a rule for how to equivariantly collapse a subspace of
|P − {0̂, 1̂}| as output. In the simplest instance, we recover a common generalisation of
work of Björner-Walker [BW83], Welker [Wel90], and Kozlov [Koz98].

Example. — If we feed our algorithm �4 with its �2 × �2-action and a suitably
chosen pair of functions, it collapses the contractible subcomplex drawn with thin lines
on the left and gives rise to the bouquet of circles on the right:

In general, our branching rule for restrictions of the partition complex �n to Young
subgroups �n1 × · · · × �nk

reads

|�n| �−−−→
∨

d|gcd(n1,...,nk)

∨

B(
n1
d ,...,

nk
d )

Ind
�n1×···×�nk

�d

(
�−1(S

n
d −1)∧d ∧ |�d |�

)
.

Here B(m1, . . . ,mk) denotes the set of words in letters c1, . . . , ck which are lexicographi-
cally minimal among their own cyclic rotations and involve the letter ci exactly mi times.
Its size is given by a famous formula due to Witt [Wit37] as

1
m

∑

d|gcd(m1,...,mk)

μ(d)

(
m

d
m1
d
, . . . , mk

d

)

for m = m1 + · · · + mk.

The branching rule allows us to split strict Young quotients of |�n|, and we can
decompose them even further by constructing a new cofibre sequence of strict orbit spaces
for each d and each n even:

�2|� d
2
|� ∧

� d
2

(S2n+1)∧
d
2 → �2|�d |� ∧

�d

(Sn)∧d → �|�d |� ∧
�d

(Sn+1)∧d .

This is a “strict” analogue of the Takayasu cofibration sequence (cf. [Tak99], [Kuh01]).
Based on these topological results, we compute the homology of strict Young quo-

tients of |�n| with coefficients in Q and Fp for all primes p. From our computations, we
can read off the algebraic André-Quillen homology of trivial square-zero extensions over
these fields, thereby generalising work of Goerss over F2 and establishing a key tool in the
emerging field of deformation theory in characteristic p, cf. [BM19] [BW20].
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1. Statement of results

We shall begin by describing our general combinatorial branching algorithm and
then proceed to explain its consequences for fixed points and restrictions of partition
complexes and Bruhat-Tits buildings. Finally, we will discuss several computations and
conceptual connections concerning strict quotients of partition complexes.

Complementary collapse. — Fix a finite group G acting in an order-preserving manner
on a finite lattice P , i.e. a finite poset containing all binary meets x ∧ y and joins x ∨ y. Let
FP denote the collection of nondegenerate chains in P and write P =P − {0̂, 1̂} for the
poset obtained by removing the minimum 0̂ and the maximum 1̂ from P . We introduce
the following notion:

Definition 3.16. — A function F :FP →P is called an orthogonality function if

(1) F is G-equivariant and increasing (i.e. y ≤ F(σ ) for every σ ∈FP and every y ∈ σ ).

(2) For any σ = [y0 < · · · < ym] ∈FP and z > ym, the following subposet is discrete:

{ym < t < z | t ∧ F(σ ) = ym, (t ∨ F(σ )) ∧ z = z}.
Lists F = (F1, . . . ,Fn) of orthogonality functions are examples of “orthogonality fans”

(cf. Definition 3.8), and there is a notion for when a chain σ = [y0 < · · · < yr] is orthogo-
nal to a fan F, written σ ⊥ F (cf. Definition 3.9). Using discrete Morse theory (cf. [For98],
[Fre09]), we prove:

Theorem 3.14 (Complementary collapse). — Let F = (F1, . . . ,Fn) be an orthogonality fan on

P with F1([0̂]) �= 0̂, 1̂. There is a G-equivariant simple homotopy equivalence

|P| �−→
∨

[y0<···<yr ]⊥F

|P (0̂,y0)
|� ∧ �|P (y0,y1)|� ∧ · · · ∧ �|P (yr−1,yr)|� ∧ |P (yr ,1̂)|�.

Here P (a,b) denotes the subposet of elements z with a < z < b, and the unreduced
suspension of a space X is denoted by X�. If X is pointed, we write �X for its reduced
suspension. An equivariant simple homotopy equivalence is an equivariant equivalence which
can be obtained by iterated elementary expansions and collapses (cf. Definition 2.11).

Applying our theorem to the case where F consists of a single function F1

with F1(0̂) = x and F1(y) = 1̂ for y > 0̂, we recover Björner-Walker’s complemen-
tation formula (cf. [BW83]) and its generalisations by Kozlov [Koz98] and Welker
[Wel90].

Complementary collapse constitutes a powerful tool in poset topology, as we will
demonstrate now.
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Fixed points. — Write Pn for the lattice of partitions of n = {1, . . . , n}, ordered so
that σ ≤ τ if σ refines τ . Set �n =Pn − {0̂, 1̂}. Given a subgroup G ⊂ �n, we can ask:

Question. — What is the W�n
(G) = N�n

(G)/G-equivariant simple homotopy type
of the space of fixed points |�n|G?

If G acts transitively on n = {1, . . . , n}, then n can be identified, as a G-set, with
the coset space G/H for H the stabiliser of the element 1, say. For such transitive ac-
tions, it is not difficult to show that the poset of G-invariant partitions of G/H is iso-
morphic to the poset of subgroups of G that contain H. This is Lemma 6.5 (it had ap-
peared in the paper of White-Williamson [WW76, Lemma 3], who attributed the result
to Klass [Kla73]).

For general G ⊂ �n, this question is more difficult. Group actions on posets fall into
two categories: either all orbits are equivariantly isomorphic, in which case the action is
called isotypical, or they are not, in which case the action is called non-isotypical.

Complementary collapse reduces the above question to the easier transitive case:

Theorem 6.2. — If G acts isotypically, relabel n so that G is a transitive subgroup of a

diagonally embedded �d

�−→ �
n
d

d ⊂ �n for d | n. There is a W�n
(G) = N�n

(G)/G-equivariant

simple equivalence

|�n|G �−−→ IndW�n (G)

W�d
(G)×� n

d

(|�d |G)� ∧ |� n
d
|�.

Here we used the following notation: given a subgroup H ⊂ G and a pointed H-
space X, the induced G-space IndG

H(X) = G+ ∧H X is the wedge of |G/H| copies of X
with its natural G-action.

In the remaining case, we have:

Lemma 6.3. — If G acts non-isotypically, then |�n|G is W�n
(G)-equivariantly collapsible.

Remark. — This lemma also has a very straightforward and direct proof. It has
been observed independently by Markus Hausmann.

In [ADL16], the authors proved that the only p-groups P for which the fixed point
space |�n|P is not contractible are elementary abelian groups acting freely on n. It was
also observed that if n = pk and P ∼= Fk

p acts freely and transitively on n, then �P
n is iso-

morphic to the poset BT(Fk
p) of proper non-trivial subgroups of P, which is closely related

to the Tits building for GLk(Fp). Combining these observations with our Theorem 6.2
and Lemma 6.3, we can complete the calculation and describe all fixed point spaces of
the partition complex with respect to p-groups:



THE ACTION OF YOUNG SUBGROUPS ON THE PARTITION COMPLEX 51

Corollary 6.8. — Let P ⊂ �n be a p-group.

(1) If P ∼= Fk
p is elementary abelian acting freely on n for n = mpk (here p may divide m), set

AffFk
p
= N�

pk
(Fk

p)
∼= Fk

p �GLk(Fp), AffFk
p
�m

= N�n
(Fk

p)
∼= (Fk

p)
m

� (GLk(Fp) × �m).

There is an AffFk
p
�m

-equivariant simple homotopy equivalence

|�n|P �−−→ Ind
Aff

Fk
p 
�m

Aff
Fk

p
×�m

(|BT(Fk
p)|� ∧ |�m|�).

As before, BT(Fk
p) is the poset of proper nontrivial subspaces of Fk

p. Nonequivariantly, this

implies that |�n|P is a bouquet of (m − 1)! · pk(m−1)+(k2
)

spheres of dimension m + k − 3.

(2) If the action of P is not of this form, then |�n|P is W�n
(P)-equivariantly contractible.

Our techniques also let us examine fixed points under iterated wreath products:

Lemma 6.6. — Suppose that d | n and that d factors as a product d = d1 · · · dl of integers

d1, . . . , dl > 1 with l > 1. Consider the iterated wreath product �d1 
 · · · 
 �dl
as a subgroup of �n

via the diagonal embedding. Then the space |�n|�d1 
···
�dl is collapsible.

Restrictions. — We proceed to our results concerning the restrictions of |�n| to
Young subgroups. Fix positive integers n1, . . . , nk with n = n1 + · · · + nk . As before, we
write B(n1, . . . , nk) for the set of words in letters c1, . . . , ck which are lexicographically
minimal among their rotations and involve the letter ci precisely ni times. Words with this
minimality property are called Lyndon words.

One can choose orthogonality functions (F1,F2) on �n and apply complementary
collapse to obtain:

Theorem 5.10. — There is a �n1 × · · · × �nk
-equivariant simple homotopy equivalence

(1.1) |�n| �−−→
∨

d|gcd(n1,...,nk)

w∈B(
n1
d ,...,

nk
d )

Ind
�n1×···×�nk

�d

(
�−1(S

n
d −1)∧d ∧ |�d |�

)
.

Here �n1 × · · · × �nk
⊂ �n is the subgroup of permutations in �n that preserve the

partition x = {{1, . . . , n1}, {n1 + 1, . . . , n1 + n2}, . . .}. The asserted equivalence is pointed,
where the basepoint of |�n| is given by the above partition x. If d > 0 divides all of
n1, . . . , nk , then �

n
d

d is a subgroup of �n1 × · · · × �nk
. We obtain a diagonal inclusion

�d ↪→ �n1 ×· · ·×�nk
and will identify �d with its image under this map. By �−1(S

n
d −1)∧d ,

we mean a desuspension of the sphere (S
n
d
−1)∧d with its natural �d -action. Such a desus-

pension exists since there is a �d -equivariant homeomorphism between Sd and the sus-
pension of the reduced standard representation sphere of �d .
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Remark 1.2. — Our definition of �d only works well for d ≥ 2. For d = 2, |�2| is
the empty set, which we identify with the (−1)-dimensional sphere, since its unreduced
suspension |�2|� is homeomorphic to S0. We decree that |�1| is the (−2)-dimensional
sphere. In practice, this means that the space |�1| is undefined, but for any suspension
X�, we define X� ∧ |�1|� := X.

Example. — If gcd(n1, . . . , nk) = 1, Theorem 5.10 says that |�n| is �n1 ×· · ·×�nk
-

equivariantly equivalent to a wedge sum
∨

w∈B(n1,...,nk)
(�n1 × · · · × �nk

)+ ∧ Sn−3 of copies
of Sn−3, freely permuted by �n1 × · · · × �nk

. In the special case of �n−1 × �1 ⊂ �n, we
note that |B(n − 1,1)| = 1, and hence conclude that there is a �n−1-equivariant homo-
topy equivalence |�n| � �n−1+ ∧ Sn−3. This equivalence is well-known. For example,
see [Don12] for a closely related statement.

In the case of the subgroup �n−2 × �2 for n even, one easily calculates that
|B(n−2,2)| = n−2

2 and |B( n−2
2 ,1)| = 1. We conclude that there is a �n−2×�2-equivariant

equivalence

(1.3) |�n| �
∨

n−2
2

(�n−2 × �2)+ ∧ Sn−3 ∨ (�n−2 × �2)+ ∧
�2

Sn−3.

In the right summand Sn−3 has an action of �2: it is homeomorphic to S
n
2 −2 ∧ (Ŝ1)∧

n
2 −1,

where S
n
2 −2 is a sphere with a trivial action of �2 while Ŝ1 is a sphere on which �2 acts

by reflection about a line. Formula (1.3) was first obtained by Ragnar Freij, see [Fre09],
Theorems 5.3 and 5.5.

For n = 4, we obtain the �2 × �2-equivariant equivalence depicted in the begin-
ning of this article:

|�4| �−→ (�2 × �2)+ ∧ S1 ∨ (�2 × �2)+ ∧
�2

Ŝ1.

Here |�4| is a one-dimensional complex. The map is defined by �2 × �2-equivariantly
collapsing the subcomplex drawn in thin lines. The reader is invited to check that this
subcomplex is �2 ×�2-invariant, and that the quotient space of |�4| by this subcomplex
is indeed homeomorphic to (�2 × �2)+ ∧ S1 ∨ (�2 × �2)+ ∧�2 Ŝ1.

Our Theorem 5.10 is a strengthening of the main result of [AK98]. In [op. cit.],
the authors applied Goodwillie calculus to the Hilton-Milnor theorem, which is a de-
composition result for the topological free group generated by a wedge sum of connected
spaces. It was possible to prove a weak version of Theorem 5.10 which holds only after
one (a) makes the group action pointed-free, (b) applies the suspension spectrum functor.
Moreover, the map defining this equivalence was not constructed explicitly in [op. cit.].

In this work, we first give an explicit point-set level description of the map in (1.1)
as a collapse map and then prove that it is an equivariant simple homotopy equivalence
of spaces. Such an explicit description is desirable for applications.



THE ACTION OF YOUNG SUBGROUPS ON THE PARTITION COMPLEX 53

For example, partition complexes show up in the study of spectral Lie algebras, i.e. al-
gebras over the spectral Lie operad Lie defined by Salvatore [Sal98] and Ching [Chi05].
The nth term of Lie is given by MapSp(S

1, (S1)∧n) ∧ D(�|�n|�), where D denotes
Spanier-Whitehead duality. Its structure maps are constructed by “grafting” weighted
trees. The homotopy and homology groups of spectral Lie algebras form graded Lie
algebras.

In Sections 4.8 and 4.9, we link the simplicial collapse maps in Theorem 5.10 to the
structure maps of the spectral Lie operad. This allows us to give a concrete description of
free spectral Lie algebras on many generators. Indeed, suppose that we are given spectra
X1, . . . ,Xk . Let w be a Lie word in letters c1, . . . , ck involving the letter ci precisely |w|i
times. We can define a natural map Fw : X∧|w|1

1 ∧ · · · ∧ X∧|w|k
k

Fw−→ FreeLie(X1 ∨ · · · ∨ Xk)

to the free spectral Lie algebra on X1 ∨ · · · ∨ Xk . The induced map on homotopy
π∗(X1)

⊗|w|1 ⊗ · · · ⊗ π∗(Xk)
⊗|w|k −→ π∗(FreeLie(X1 ∨ · · · ∨ Xk)) has the effect of send-

ing an element (x1
1 ⊗ · · · ⊗ x

|w|1
1 ⊗ x1

2 ⊗ · · · ⊗ x
|w|2
2 ⊗ . . .) to the element obtained by first

replacing, for all i, the occurrences of ci in w by x1
i , . . . , x

|w|i
i from left to right, and then

evaluating this Lie product in the Lie algebra π∗(FreeLie(X1 ∨ · · · ∨ Xk)).
Theorem 5.10 implies:

Corollary 5.13. — Summing up the induced maps

Fw : FreeLie(X
∧|w|1
1 ∧ · · · ∧ X∧|w|k

k ) −−→ FreeLie(X1 ∨ · · · ∨ Xk)

over all words w in the Lyndon basis Bk for the free Lie algebra on k letters, we obtain an equivalence

∨

w∈Bk

Fw :
∨

w∈Bk

FreeLie(X
∧|w|1
1 ∧ · · · ∧ X∧|w|k

k )
�−−→ FreeLie(X1 ∨ · · · ∨ Xk).

Remark 1.4. — An equivalence of this form can also be deduced by applying
Goodwillie calculus to the Hilton-Milnor theorem, as established by the first-named au-
thor and Marja Kankaanrinta [AK98]. However, the maps arising in this approach are
mysterious and it is not a priori clear how they interact with the Lie bracket. More-
over, this approach does not give any genuine equivariant information. These two sig-
nificant obstructions to applications are not present in our explicit approach, which
makes the interaction with the Lie operad and genuine equivariant phenomena entirely
transparent.

We can also give an asymmetric decomposition for Young restrictions of |�n|.
For this, we fix a Young subgroup �A × �B1 × · · · × �Bk

⊂ �n and set B = ∪k
i=1Bi .

Complementary collapse implies:
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Theorem 5.15 (Symmetry breaking). — There is a simple �A ×�B1 ×· · ·×�Bk
-equivariant

homotopy equivalence spaces

|�n| −→
∨

A=A1
∐···∐Ar , Ai �=∅
fi :Ai↪→B

s.t. im(fi+1)⊂im(fi)

�−1S|A1| ∧ · · · ∧ S|Ar | ∧ |�B|�.

Partition complexes can be thought of as Bruhat-Tits buildings over “the field with
one element”. In this heuristic picture, Young subgroups correspond to parabolic sub-
groups. Complementary collapse then has a neat analogous consequence for parabolic
restrictions of Bruhat-Tits buildings.

Assume that V is a finite-dimensional vector space over a finite field k. Fix a flag
A = [A0 < · · · < Ar] of proper nonzero subspaces of V, and write PA for the associ-
ated parabolic subgroup. Choose a complementary flag B = [B0 < · · · < Br] to A with
corresponding parabolic subgroup PB. Write LAB = PA ∩ PB for the intersecting Levi.
Complementary collapse shows:

Lemma 5.17. — There is a PA-equivariant simple equivalence

|BT(V)| � IndPA
LAB

(�r

r+1∧

i=0

|BT(gri(B))|�).

Here gri(B) = Bi/Bi−1 for i = 1, . . . , r and we set gr0(B) = B0 and grr+1(B) = V/Br .

This result can be used to give a new topological proof of a classical result in mod-
ular representation theory:

Corollary 5.18. — Let k = Fq be a finite field and assume that R is any ring in which the

number
∏n

k=1(q
k − 1) is invertible. Write St = H̃n−2(BT(Fn

q),Z) for the integral Steinberg module.

Then St⊗R is a projective R[GLn(Fq)]-module.

Strict orbits. — Strict quotients of |�n| by subgroups of �n have received some at-
tention over the years. First of all, it is known that the quotient space of |�n| by the full
symmetric group is contractible for n ≥ 3. This is due to Kozlov, [Koz, Corollary 4.3].
We give a new proof of this result in Corollary 8.10. Results about quotient spaces by cer-
tain subgroups of �n were obtained, for example, by Patricia Hersh [Her03] (for groups
�2 
 �m) and Ralf Donau [Don12] (for subgroups of �1 × �n−1).

In this paper, we will address the following question:

Question. — Given a Young subgroup �n1 × · · · × �nk
⊂ �n, what is the homology

and homotopy type of the strict Young quotient |�n|/�n1×···×�nk
?

We start by observing the following immediate consequence of Theorem 5.10:
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Corollary 8.2. — Suppose n = n1 + · · · + nk. There is an equivalence

|�n|/�n1×···×�nk

�−−→
∨

d|gcd(n1,...,nk)

B(
n1
d ,...,

nk
d )

(

�−1(S
n
d
−1)∧d ∧

�d

|�d |�
)

.

More generally, given pointed spaces X1, . . . ,Xk , the space |�n|� ∧�n
(X1 ∨ · · · ∨ Xk)

∧n is

equivalent to

∨

n=n1+···+nk
d|gcd(n1,...,nk)

w∈B(
n1
d

,...,
nk
d

)

(

(S
n
d −1 ∧ X

n1
d

1 ∧ · · · ∧ X
nk
d

k )∧d ∧
�d

|�d |�
)

.

We are therefore reduced to answering the above questions for spaces of the form
�−1(S�)∧d ∧�d

|�d |�. Fix a prime p. To compute the Fp-homology of the spaces in ques-
tion, we consider the graded Mackey functor with μ∗(T) = H̃∗(S�n ∧

�n

T+,Fp). There

is a spectral sequence of signature H̃
Br
s (|�n|�;μt) ⇒ H̃s+t(S�n ∧

�n

|�n|�,Fp) from Bredon

homology to the homology of strict quotients.
If � is odd, then this Mackey functor μ∗ has desirable properties and indeed satisfies

the conditions of the main Theorem 1.1. of [ADL16]. Using this, we compute in our final
Section 9:

Theorem 9.1. — Let � ≥ 1 be an integer, assumed to be odd whenever the prime p is odd.

If n is not a power of p, then H̃∗(|�n|� ∧
�n

S�n,Fp) is trivial.

If n = pa, then H̃∗(|�pa |� ∧
�pa

S�pa

,Fp) has a basis consisting of sequences (i1, . . . , ia), where

i1, . . . , ia are positive integers satisfying:

(1) Each ij is congruent to 0 or 1 modulo 2(p − 1).

(2) For all 1 ≤ j < a, we have 1 < ij < pij+1.

(3) We have 1 < ia ≤ (p−1)� (note that if p > 2, then (1) means that the inequality is strict).

The homological degree of (i1, . . . , ia) is i1 + · · · + ia + � + a − 1.

To reduce the case where � is even to the case where � is odd, a new conceptual
insight is required. The key observation is that for p = 2, the above basis has the same
form as the algebraic André-Quillen homology AQF2∗ (F2 ⊕ ��F2) of the trivial square
zero extension of F2 by a generator in simplicial degree j as computed by Goerss (cf.
[Goe90]). This similarity suggests that strict quotients of the partition complex are also
the André-Quillen homology of suitably defined objects.

Indeed, the correct structure to consider here is that of a (strictly) commutative monoid

space, i.e. a space X together with a continuous, commutative, and associative multiplica-
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tion law, a unit 1, and a contracting element 0. Heuristically, these monoids give “simpli-
cial commutative rings over F1”.

More formally, we consider the pointed model category CMonaug of strictly com-
mutative monoid spaces augmented over S0, the monoid with two distinct elements 0 and
1. Any pointed space X gives rise to an augmented commutative monoid space S0 ∨ X
by declaring that a · b = 0 unless a = 1 or b = 1. We call this the trivial square zero extension

of S0 by X. There is a natural notion of André-Quillen homology, denoted by AQ, for these
commutative monoid spaces.

The following result establishes the crucial connection to strict orbits of the parti-
tion complex:

Lemma 8.4. — If X is a well-pointed space, then AQ(S0 ∨ X) �∨n≥1 �|�n|� ∧
�n

X∧n.

We achieve the reduction “from even � to odd �’ by constructing a new cofibre
sequence, which we will now outline. There is a natural notion of suspension �⊗ in the
pointed model category CMonaug .

For every pointed space, we produce a natural “EHP-like” sequence of maps

�⊗(S0 ∨ �X∧2)
H−→ �⊗(S0 ∨ X)

E−→ S0 ∨ �X.

The first map in this sequence is subtle to define and requires us to work with point-set
models for strictly commutative monoid spaces. We then prove:

Theorem 7.41. — If Sn is a sphere of even dimension n ≥ 2, then the EHP sequence

�⊗(S0 ∨ S2n+1)
H−→ �⊗(S0 ∨ Sn)

E−→ S0 ∨ Sn+1

is in fact a homotopy cofibre sequence of strictly commutative monoid spaces.

Just like the classical EHP sequence gives rise to the Takayasu cofibration sequence
via Goodwillie calculus (cf. Section 4.2 of [AM99], [Beh12, Remark 2.1.7]), our new
EHP sequence for commutative monoid spaces induces a strict analogue of the Takayasu
cofibration sequence by applying AQ:

Theorem 8.5. — For each d ∈ N and each � ∈ N even, there is a cofibre sequence of spaces

�2|� d
2
|� ∧

� d
2

(S2�+1)∧
d
2 → �2|�d |� ∧

�d

(S�)∧d → �|�d |� ∧
�d

(S�+1)∧d .

Here we use the convention that the space on the left is contractible if d is odd.

Combining this with Corollary 8.2, we can assemble the space �2|�n|�/�n1×···×�nk

from atomic blocks �|�d |� ∧�d
(S�)∧d with � odd. This will be helpful for our homological

considerations.
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But first, we give a conceptual interpretation of the homology of strict Young quo-
tients of |�n|, thus explaining the aforementioned similarity between the F2-homology
of |�d |� ∧�d

(S�)∧d and the algebraic André-Quillen homology of the trivial square-zero
extensions of F2 computed by Goerss.

Given any ring R, we can apply the reduced chains functor C̃•(−,R) to a com-
mutative monoid space X and obtain a simplicial commutative R-algebra. Heuristically, we
extend scalars from F1 to R. This operation intertwines André-Quillen chains for strictly
commutative monoid spaces with the classical algebraic André-Quillen chains for sim-
plicial commutative R-algebras (cf. Lemma 7.31). Moreover, the functor C̃•(−,R) sends
the trivial square-zero extension S0 ∨X to the trivial square zero extension R⊕ C̃•(X,R).
When combined with Lemma 8.4, these observations show that the singular homology
of strict Young quotients of the doubly suspended partition complex �|�n|� computes
algebraic André-Quillen homology:

Theorem 8.12. — If X is a well-pointed space and R is a ring, then

H̃∗

(∨

d≥1

�|�d |� ∧
�d

X∧d,R
)

∼= AQR
∗

(

R ⊕ C̃•(X,R)

)

.

The algebraic André-Quillen cohomology groups of trivial square-zero extensions
of R are of particular interest since they parametrise the operations which act naturally
on the André-Quillen cohomology of any simplicial commutative R-algebra.

Theorem 8.12 allows us to observe that our splitting in Corollary 8.2 and our cofi-
bration sequence in Theorem 8.5 imply corresponding results for the algebraic André-
Quillen homology over any ring. Over F2, these were first proven by Goerss [Goe90]. We
find it remarkable that our combinatorial methods have these consequences in derived
algebraic geometry. Combining our results, we prove:

Theorem 8.18. — Fix integers �1, . . . , �k ≥ 0 and consider the reduced homology group

H̃∗

(∨

d

�|�d |� ∧
�d

(S�1 ∨ · · · ∨ S�k)∧d,R
)

.

This group is given by the algebraic André-Quillen homology AQR
∗ (R ⊕ (��1R ⊕ · · · ⊕ ��k R)) of

the trivial square zero extension of R by generators x1, . . . , xk in simplicial degrees �1, . . . , �k .

For R = Q, the above homology group has a basis indexed by pairs (e,w). Here w ∈
Bk(n1, . . . , nk) is a Lyndon word. We have e = 0 if |w| :=∑i(1 + �i)ni − 1 is odd and e ∈ {0,1}
if |w| is even. The homological degree of (e,w) is (1 + e)|w| + e and it lives in multi-weight

(n1(1 + e), . . . , nk(1 + e)).

For R = Fp, the above homology group has a basis indexed by sequences (i1, . . . , ia, e,w),

where w ∈ Bk(n1, . . . , nk) is a Lyndon word and e lies in {0, ε}. Here ε = 1 if p is odd and |w| is

even or if |w| = 0. Otherwise, set ε = 0. The sequence i1, . . . , ia consists of positive integers satisfying:
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(1) Each ij is congruent to 0 or 1 modulo 2(p − 1).

(2) For all 1 ≤ j < a, we have 1 < ij < pij+1.

(3) We have 1 < ia ≤ (p − 1)(1 + e)|w| + ε.

The homological degree of (i1, . . . , ia, e,w) is i1 + · · · + ia + (1 + e)|w| + e + a and it lives in

multi-weight (n1pa(1 + e), . . . , nkp
a(1 + e)). Note that a = 0 is allowed.

A sequence (i1, . . . , ia, e,w) satisfying the conditions in the theorem above is called
allowable with respect to R = Q or R = Fp, respectively. We can read off the answer to the
question raised above:

Corollary 8.19. — Let n = n1 + · · · + nk.

The vector space H̃∗(|�n|/�n1×···×�nk
,Q) has a basis consisting of all Q-allowable sequences

(e,w ∈ B(m1, . . . ,mk)) which satisfy mi(1 + e) = ni for all i.

The vector space H̃∗(|�n|/�n1×···×�nk
,Fp) has a basis consisting of all Fp-allowable sequences

(i1, . . . , ia, e,w ∈ B(m1, . . . ,mk)) satisfying mip
a(1 + e) = ni for all i.

The sequence (i1, . . . , ia, e,w) is in homological degree i1 +· · ·+ ia +(1+ e)|w|+ e+a−2.

We have seen in Corollary 8.2 that strict Young quotients of partition complexes
split as wedge sums of spaces of the form �−1(S�)∧d ∧�d

|�d |�, which sit in the cofibre
sequences in Theorem 8.5.

We study the homotopy type of these spaces and prove that �−1(S�)∧d ∧�d
|�d |� is:

(1) rationally contractible unless d = 1 or d = 2 and � even (this is a special case of
Theorem 8.18).

(2) equivalent to ��RP�−1 if d = 2 (this is well-known).
(3) equivalent to the p-localisation of the strict quotient �−1(S�)∧p/�p

if d = p is an
odd prime, and � is odd (cf. Proposition 8.21).

(4) equivalent to the p-localisation of the homotopy cofibre of the map S�p−1 →
S�p−1/�p

if d = p is an odd prime, and � is even (cf. Proposition 8.21).
(5) contractible if � = 1 or if � = 2 and d is an odd prime (cf. Lemma 8.9 and

Corollary 8.24).

Hence, we describe the homotopy type of �−1(S�)∧d ∧�d
|�d |� when d is prime or � = 1.

Together with Corollary 8.2, this allows us to describe |�2p2 |/�
p2×�

p2 for any prime p.
Moreover, we

(1) describe the torsion-free part of H̃∗(|�n|/�n1×···×�nk
,Z) in all cases (but this is

not new).
(2) compute the groups H̃∗(|�n|/�n1×···×�nk

,Q) and H̃∗(|�n|/�n1×···×�nk
,Fp) for all

primes p.
(3) prove that H̃∗(|�n|/�n1×···×�nk

) has p-primary torsion only for primes p that
satisfy the inequality p ≤ gcd(n1, . . . , nk) (cf. Lemma 8.20).
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(4) describe the homotopy type of |�n|/�n1×···×�nk
when gcd(n1, . . . , nk) equals 1 or

a prime number (cf. Corollary 8.3 and Proposition 8.21).
(5) classify Young subgroups for which the quotient is a wedge of spheres (Corol-

lary 8.27).

Historical review. — This paper subsumes the preprint [Aro15], a part of the second-
named author’s thesis [Bra17], and additional joint work. We give a brief historical re-
view. The short discrete Morse-theoretic proof of Theorem 6.2 concerning the fixed
points of partition complexes was found by the second-named author in the spring of
2014 and presented at a short presentation in Bonn in May 2015. In late August of the
same year, the first-named author made his preprint publicly available. Here, the first-
named author follows a very different path: He first establishes Theorem 6.2 for certain
wreath products. Using this, he proceeds to prove Theorem 5.10 by reducing it to the
algebraic Hilton-Milnor theorem on the level of cohomology. From this, he then deduces
Theorem 6.2 for all subgroups. Strictly speaking, only the non-simple versions of these
two statements were covered. The preprint also contains several other statements, in par-
ticular a version of Lemma 8.9 and Corollary 8.27. The preprint motivated the second-
named author to strengthen his discrete Morse theoretic methods, develop the theory
of orthogonality fans, and thereby give the direct combinatorial proof of the strength-
ened version of Theorem 5.10 presented in this paper. In this approach, fixed points and
restrictions are computed independently by applying a general combinatorial technique.

2. Topological preliminaries

We set up the basic framework used in the subsequent sections of this article.

2.1. Combinatorial models for spaces. — We briefly review the links between several
models for spaces commonly used in homotopy theory and combinatorial topology.

Write Top for the category of compactly generated weak Hausdorff spaces. We
will simply call its objects “spaces”. All limits and colimits will be implicitly computed in
this category rather than the category of mere topological spaces (cf. [McC69], where
compactly generated weak Hausdorff spaces are called “compact spaces”).

In homotopy theory, we often use the category sSet of simplicial sets, i.e. contravari-
ant functors from the category of nonempty linearly ordered finite sets � to the category
of sets. The Yoneda embedding i : � ↪→ sSet sends the ordered set [n] := {0 < · · · < n}
to the simplicial n-simplex.

In combinatorial topology, the following notion is commonly used:

Definition 2.1. — A simplicial complex is a pair (V,F) consisting of a set V of vertices and

a set F ⊂ P(V) of finite nonempty subsets of V, called faces, such that F is closed under passing to

nonempty subsets and contains all singletons. A morphism (V,F) → (V′,F′) of simplicial complexes

is a map V → V′ sending subsets in F to subsets in F′. Let sCpl be the resulting category.
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Let Fin+ denote the category of nonempty finite sets. We can define a functor
Fin+ → sCpl by sending a set B to the simplicial complex (B,P(B)) modelling a simplex
with B vertices.

Yet another common model is given by the category CW of CW-complexes.
To link these models, we use the following gadget (cf. [Gra01], [Law88], [RT03]):

Definition 2.2. — The category SymsSet of symmetric simplicial sets is given by the category

of contravariant functors from Fin+ to Set.

There is a natural diagram

�
U

> Fin+

sSet
∨
∩

L
> SymsSet

∨
∩

| − |
> CW >

F
⊂

>
Top.

The vertical arrows are given by Yoneda embeddings, the functor U forgets the
order, the functor L is the colimit-preserving extension making the diagram commute,
the functor F sends a finite set B to the simplex on B vertices, and the functor | − |
extends F in a colimit-preserving way.

Every simplicial complex X gives a symmetric simplicial set B �→
MapsCpl((B,P(B)),X), and this assignment is in fact fully faithful.

Writing Po for the category of posets, there is a nerve functor N• : Po → sSet (defined
by considering posets as categories) and an order complex functor N : Po → sCpl (defined
by sending a poset P to the simplicial complex whose vertices are the elements of P and
whose faces are all subsets which are chains in P). These constructions are compatible –
the following diagram commutes:

(2.3)

Po
N

> sCpl

sSet

N•∨
> SymsSet

∨ | − |
> CW > Top.

We will abuse notation and denote all arrows landing in CW or in Top by | − |.
For the rest of this section, we fix a finite group G. We invite the reader to recall the

notion of a G-CW-complex from [Lüc89] – note that this is not the same as a G-object in
CW-complexes. We write PoG, sCplG, sSetG, and SymsSetG for the categories of objects
with G-action in the undecorated versions of these respective categories. One can then
obtain a G-equivariant version of diagram (2.3) on the preceding page. A similar diagram
exists in the pointed setting.

2.2. Basic examples. — Many posets have an initial and/or final element which we
will denote by 0̂ and/or 1̂. Given a poset P , we define P :=P − {0̂, 1̂}.
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Example 2.4. — Let Cm be the linearly ordered set of integers between 1 and
m. Then |Cm| = �m−1 is the standard (m − 1)-dimensional simplex. Its points can be
parametrised by tuples of numbers t0, . . . , tm−1 ≥ 0 with t0 + · · · + tm−1 = 1. Alternatively,
we can specify points in �m−1 by tuples s0, . . . , sm−1 satisfying 0 ≤ s1 ≤ · · · ≤ sm−1 ≤ 1.
The simplicial boundary of Cm is the simplicial complex consisting of all the increasing
chains in Cm, except for the maximal chain [1 < · · · < m]. Its geometric realisation is the
topological boundary ∂�m−1 of �m−1, i.e. the sphere Sm−2.

Example 2.5. — Let Bm be the poset of subsets of m = {1, . . . ,m}. It is easy to see
that there is an isomorphism of posets Bm � (B1)

m. As |B1| � [0,1], there is a homeo-
morphism |Bm| � [0,1]m. Next, we consider Bm − {0̂} – the poset of non-empty subsets
of m, and Bm = Bm −{0̂, 1̂} – the poset of proper, non-empty subsets of m. We draw B4:

It is well-known, and not difficult to check, that the order complexes of B−{0̂} and
Bm are isomorphic to the barycentric subdivisions of Cm and of its simplicial boundary,
respectively (see Example 2.4). There is a �m-equivariant homeomorphism |Bm| � Sm−2

to the doubly desuspended representation sphere of the standard representation of �m. It
is well-known and not difficult to prove that this action is homeomorphic to the action of
�m on the unit sphere in Rm−1. Here Rm−1 is endowed with the reduced standard action.

2.3. Equivariant homotopy theory. — Let G be a finite group. All of our spaces will
be homeomorphic, as G-spaces, to geometric realisations of G-simplicial sets. A (finite)
pointed G-space X can be written as a (finite) homotopy colimit of spaces G/H+, where
H is an isotropy group of X.

A G-map f : X → Y is a G-equivariant weak equivalence if it induces weak equiv-
alences of fixed point spaces f H : XH → YH for every subgroup H of G. It is well-known
that for nice spaces, an equivariant weak equivalence is an equivariant homotopy equiv-
alence. It is in fact not necessary to check the fixed points condition for every subgroup
of G – isotropy groups of X and Y suffice.

Suppose that K and H are subgroups of G and that X is a pointed space with an
action of H. One may form the G-space IndG

H X := G+ ∧H X and consider the space of
K-fixed points (IndG

H X)K with its action by the Weyl group WG(K) = NG(K)/K. Write
NG(K;H) = {g ∈ G | g−1Kg ⊂ H} and note that H acts on this set from the right. The
following is well-known:
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Lemma 2.6. — There is a WG(K)-equivariant homeomorphism (IndG
H X)K ∼=∨

[g]∈NG(K;H)/H Xg−1Kg , where the Weyl group WG(K) acts through the natural left action of NG(K)

on the set NG(K;H). Hence if K is not subconjugate to H, then (IndG
H X)K ∼= ∗.

We will now provide some tools which make it possible to compute the effect of
Theorem 5.10 on fixed points. This can be used to give an alternative proof of some of our
results in Section 6.2, where we have chosen a more direct approach. Let G ⊂ �d ⊂ �n,
where d | n and �d is embedded diagonally in �n (observe the change in the role of G).

Lemma 2.7. — Let σ ∈ N�n
(G;�d) be an element of �n that conjugates G to a subgroup of

�d . Then there is an element η ∈ �d such that conjugation by η on G is the same as conjugation by σ .

Proof. — An inclusion of G into �n is the same thing as an effective action of G
on n. If the inclusion factors through �d , then n is isomorphic, as a G-set, to a disjoint
union of n

d
copies of the set d, which is equipped with an effective action of G. Specifying

an element σ of �n that conjugates G into a subgroup of �d is the same as specifying a
second action of G on d (let d′ denote d with the second action of G), a group isomor-
phism σG : G → G, and a bijection σ : ∐ n

d
d →∐

n
d
d′ that is equivariant with respect

to the isomorphism σG. Such an isomorphism exists if and only if
∐

n
d
d and

∐
n
d
d′ are

isomorphic permutation representations of G. But this is possible if and only if d and d′

are isomorphic permutation representations of G, which means that the isomorphism σG

can be realised as conjugation by an element of �d . �

Let CW(G) denote the centraliser of G in W.

Corollary 2.8. — Let G ⊂ �d ⊂ W ⊂ �n with �d embedded diagonally in �n and W any

intermediate subgroup. Then inclusion induces a bijection CW(G)/C�d
(G)

∼=→ NW(G;�d)/�d .

Proof. — We have NW(G;�d) = {w ∈ W | w−1Gw ⊂ �d}. By Lemma 2.7 for ev-
ery such w one can find an η ∈ �d such that conjugation by η on G coincides with
conjugation by w, hence wη−1 ∈ CW(G). Thus every element of NW(G;�d)/�d has a
representative in CW(G). Two elements of CW(G) differ by an element of �d if and only
if they differ by an element of C�d

(G). �

Corollary 2.9. — Suppose G ⊂ �d ⊂ W ⊂ �n with �d embedded diagonally in �n, and

W any intermediate subgroup. Let X be a space with an action of �d . There is a homeomorphism

(IndW
�d

X)G ∼= IndCW(G)

C�d
(G) XG. In particular, if XG is contractible, then so is (W+ ∧�d

X)G.

Proof. — By Lemma 2.6 there is a homeomorphism (W+ ∧�d
X)G ∼=∨

NW(G;�d )/�d
Xw−1Gw. By Corollary 2.8, NW(G;�d)/�d

∼= CW(G)/C�d
(G). In par-

ticular, w can always be chosen in the centraliser of G, so Xw−1Gw = XG. It fol-
lows that (W+ ∧�d

X)G ∼= ∨
CW(G)/C�d

(G) XG. The right hand side is isomorphic to
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CW(G)+ ∧C�d
(G) XG but the latter presentation is better in the sense that it gives the

correct action of CW(G). �

2.4. Simple equivariant homotopy theory. — We briefly review the basics of simple
equivariant homotopy theory. We begin by looking at simplicial complexes and recall
a notion from [Koz15]:

Definition 2.10. — An inclusion (V,F) ⊂ (V′,F′) of G-simplicial complexes is called an

elementary G-collapse if there is a σ ∈ F′ such that

(1) There is exactly one face in F′ which properly contains σ .

(2) For every g ∈ G with gσ �= σ , there does not exist a simplex which contains both gσ and σ .

(3) F is obtained from F′ by deleting all faces which contain gσ for some g ∈ G.

There is a corresponding notion for G-CW-complexes (cf. [Lüc89]). Let Dk be the
k-dimensional disc.

Definition 2.11. — An elementary expansion consists of a pushout of G-CW-complexes

G/H × Dn−1 f
> X

G/H × Dn
∨
∩

> Y

ι∨
∩

where Dn−1 → Dn includes the lower hemisphere Dn−1 ↪→ Sn of the bounding sphere Sn of Dn, and

f (G/H × ∂Dn−1) ⊂ Xn−2, f (G/H × Dn−1) ⊂ Xn−1, where Xk denotes the k-skeleton of X.

Given a subspace X of Y for which X ↪→ Y is an elementary expansion, we call
any strong G-equivariant deformation retract Y → X an elementary collapse. An elementary
collapse between G-simplicial complexes induces an elementary collapse between their
geometric realisations.

Definition 2.12. — A G-simplicial complex (or G-CW-complex) is said to be collapsible if it

can be mapped to the point by a finite number of elementary collapses.

Definition 2.13. — A G-map f : X → Y between G-CW-complexes is a simple homotopy

equivalence if it is G-homotopic to a finite composition of expansions and collapses.

Proposition 2.14. — Let A be a contractible sub-G-CW-complex of a G-CW-complex X.

Then X/A carries a natural G-CW-structure and the quotient map X → X/A is a simple equivalence.

Proof. — Recall from [Lüc89, Section 4] that the Whitehead group is an abelian
group WhG(Y) attached to any G-CW-complex Y, and the Whitehead torsion is an ele-
ment τG(f ) ∈ WhG(Y) for any equivariant map f : X → Y. An equivariant equivalence
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f is simple if and only if τG(f ) = 0, and the result follows from additivity of the Whitehead
torsion, cf. [Lüc89, Theorem 4.8]. �

2.5. The join. — We will now review the join operation in several contexts, begin-
ning with spaces:

Definition 2.15. — The join of two spaces X and Y is given by X ∗ Y = X × I × Y/�,

where � identifies (x, y,0) � (x, y′,0) and (x, y,1) � (x′, y,1) for all x, x′ ∈ X and y, y′ ∈ Y.

The join is a model for the double mapping cylinder (i.e. homotopy pushout) of the diagram

X ← X × Y → Y. This operation is associative up to natural isomorphism.

If X,Y are G-CW-complexes, then X ∗ Y (in Top) inherits a G-CW-structure.

Notation 2.16. — Write X� = S0 ∗X for the unreduced suspension of X with base-
point 0 (the ‘south pole’). It models the pointed homotopy cofibre of X+ → S0. If X is a
G-CW-complex, there is a simple equivariant equivalence X� � (X × �1)/(x,0)∼(x′,0)

(x,1)∼(x′,1)

since

{1} ∗ X is contractible.

It is well-known that if X and Y are pointed, then there is a simple equivalence
X∗Y

�→ S1 ∧X∧Y. This can be generalised slightly to a situation where only one of the
spaces is pointed:

Lemma 2.17. — Let X be a G-CW-complex and (Y, y0) be a pointed G-CW-complex.

Then there are equivariant simple equivalences X ∗ Y
�→ X ∗ Y/X∗{y0}

�→ X� ∧ Y.

Proof. — Consider X ∗ Y/X ∗ {y0} = X × I × Y/ �1, where �1 is spanned by

(x, t, y0) �1 (x′, t′, y0), (x,0, y) �1 (x,0, y′), (x,1, y) �1 (x′,1, y)

∀x, x′ ∈ X, y, y′ ∈ Y

and ((X × �1)/ (x,0)∼(x′,0)

(x,1)∼(x′,1)

) ∧ Y = X × I × Y/ �2 where �2 is spanned by

(x, t, y0) �2 (x′, t′, y0) �2 (x,0, y), (x,1, y) �2 (x′,1, y)

∀x, x′ ∈ X, y, y′ ∈ Y

These quotients are equal. Cones are contractible, and so the claim follows from Propo-
sition 2.14. �

Hence the expression �−1(S
n
d −1)∧d ∧ |�d |� in Theorem 5.10 can be replaced with

Sn−d−1 ∗ |�d |. This form naturally occurs in the proof via discrete Morse theory.
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Examples 2.18. — The empty set acts as a unit for the join, i.e. X∗∅ ∼= ∅∗X ∼= X.
A special case of Lemma 2.17 is the well-known homeomorphism Sm ∗ Sn ∼= Sm+n+1.
Thinking of ∅ as the (−1)-dimensional sphere, the formula remains valid for m, n ≥ −1.
The join of two simplices �i ∗ �j is homeomorphic to �i+j+1. It is also easy to see that
�0 ∗ Sj is homeomorphic to �j+1. It follows that for all i ≥ 0, j ≥ −1, �i ∗ Sj is homeo-
morphic to �i+j+1.

There is a version of the join for the simplicial complexes from Definition 2.1; the
symmetry of this operation is one of the key advantages of simplicial complexes.

Definition 2.19. — The simplicial join (V1,F1) ∗ (V2,F2) of two simplicial complexes

(V1,F1), (V2,F2) is defined as (V1
∐

V2,F1 ∗ F2), where F1 ∗ F2 is the set of S ⊂ V1
∐

V2

with S ∩ Vi ∈ Fi for i = 1,2.

Geometric realisation takes the simplicial join to the space-level join. There is also
a corresponding notion for posets:

Definition 2.20. — The join of two posets P and Q is defined to be the poset P ∗ Q whose

underlying set is given by P
∐

Q and whose partial order is defined by keeping the old order on P and

Q, and declaring that every element of P is smaller than every element of Q.

It is easy to see that the order complex of P ∗Q is isomorphic to the simplicial join
of the two order complexes. It follows that |P ∗Q| � |P| ∗ |Q|.

2.6. Stars and links. — Let σ = [x0 < · · · < xk] be a non-empty chain in a poset P .

Definition 2.21. — The star St(σ ) of σ is the poset of elements of P that are comparable

with each xi. The link Lk(σ ) of σ is the subposet of St(P) consisting of elements that are distinct

from all xi .

The star decomposes as a join St(σ ) ∼=P<x0 ∗ {x0} ∗P(x0,x1) ∗ {x1} ∗ · · · ∗ {xk} ∗P>xk
.

Hence |St(σ )| is contractible. There is a similar decomposition for the link as Lk(σ ) ∼=
P<x0 ∗P(x0,x1) ∗ · · · ∗P>xk

.

2.7. Indexed wedges. — We recall the theory of indexed wedges (cf. Section 2.2.3.
of [HHR16]). Given a G-set J, we write BJG for the category with objects Ob(BJG) = J
and morphisms MorBJG(j, j ′) = {h ∈ G | h · j = j ′}. The composition law is evident.

Given a functor X : BJG → sSet∗ with j �→ Xj , the wedge sum
∨

j∈J Xj inherits
a natural G-action with g · (x ∈ Xj) := X

(j
g·−→gj)

(x) ∈ Xgj . The space
∨

j∈J |Xj| inherits a
G-CW-structure.

Clearly, we can rewrite this indexed wedge sum as an induction:

Proposition 2.22. — There is a simple G-equivalence
∨

[j]∈J/G IndG
Stab(j) |Xj| �−→∨

j∈J |Xj|.
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Corollary 2.23. — If X
α−→ Y is transformation of functors BJG → sSet∗ for which

|Xj| → |Yj| is a simple Stab(j)-equivalence all j ∈ J, then
∨

j∈J |Xj| −→∨
j∈J |Yj| is a simple

G-equivalence.

2.8. Removing simplices. — We start by observing the following basic fact:

Proposition 2.24. — Assume that we are given a square of simplicial G-sets

A > C

B
∨
∩

> D
∨
∩

such that for each simplicial degree d, the map of sets (B − A)d → (D − C)d is bijective. Taking

vertical quotients induces an isomorphism of simplicial G-sets.

Notation 2.25. — If S is a G-stable set of nondegenerate simplices in the G-
simplicial set X, let X−S be the simplicial subset of simplices which do not contain a
simplex in S. If S = {σ }, set X−σ = X−{σ }.

We will now remove simplices from the nerve of a G-poset P . We drop N• from
our notation whenever we geometrically realise, e.g. write |P−S| instead of |N•(P)−S|.

Lemma 2.26. — Let S be a G-stable family of strictly increasing chains in P such that no two

chains in S lie in a larger chain in P . The following diagram induces isomorphisms on vertical quotients:

∐
σ∈S N•(St(σ ))−σ > N•(P)−S

∐
σ∈S N•(St(σ ))

∨
∩

> N•(P)
∨
∩

We obtain cellular homeomorphisms |P|/|P−S| ∼=∨σ∈S |St(σ )|/|St(σ )−σ |.

Proof. — Any simplex in Nd(P) − Nd(P)−S contains exactly one σ ∈ S and thus
has unique preimages lying in Nd(St(σ )) − Nd(St(σ ))−σ . Proposition 2.24 proves the
claim. �

Let σ = [y0 < · · · < yr] be a chain in P . We can swap the order of the join-factors in
the star St(σ ) (cf. Section 2.6) and obtain a Stab(y0)∩· · ·∩Stab(yr)-equivariant diagram:

∂�r ∗ |Lk(σ )| > �r ∗ |Lk(σ )|

|St(σ )−σ |
∼=∨

> |St(σ )|
∼=∨
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By Lemma 2.17, there are Stab(y0)∩· · ·∩Stab(yr)-equivariant simple equivalences given
by

|St(σ )|/|St(σ )−σ | � Sr ∧ (|P<y0| ∗ . . . ∗ |P>yr
|)�

� |P<y0|� ∧ �|P(y0,y1)|� ∧ · · · ∧ �|P(yr−1,yr)|� ∧ |P>yr
|�.

Corollary 2.27. — Under the above conditions, there are simple G-equivalences

|P|/|P−S| ∼=
∨

σ=[y0<···<yr ]∈S

|St(σ )|/|St(σ )−σ |

�
∨

σ=[y0<···<yr ]∈S

|P<y0|� ∧ �|P(y0,y1)|� ∧ · · · ∧ �|P(yr−1,yr)|� ∧ |P>yr
|�

Here h ∈ G acts on the indexed wedge by sending |P<y0|� ∧ �|P(y0,y1)|� ∧ · · · ∧ �|P(yr−1,yr)|� ∧
|P>yr

|� to |P<h·y0|� ∧ �|P(h·y0,h·y1)|� ∧ · · · ∧ �|P(h·yr−1,h·yr)|� ∧ |P>h·yr
|�.

2.9. Suspensions and products. — We let S1
• = N•([1])/N•([1])−[0̂<1̂] be the simplicial

circle, where [1] denotes the poset {0̂ < 1̂}. If X is a G-simplicial set, set �X = S1
• ∧ X.

By Lemma 2.17, we obtain a simple equivariant equivalence �|X|� = S1 ∧ (S0 ∗ |X|) �
|{0} ∗ X ∗ {1}/

({0}∗X∗{1})−[0̂<1̂] |. We will make use of this well-known simplicial model for
�|X|� in the rest of this work.

Using our models for suspensions, we observe (cf. Theorem 5.1. in [Wal88] for a
related claim):

Proposition 2.28. — For i = 1, . . . , r, let Pi be a poset with distinct minimal and maximal

elements 0̂i �= 1̂i . There is a cellular homeomorphism �|P1 × · · · ×Pr|� ∼=−→ �|P1|�∧· · ·∧�|Pr|�
given by

({0̂i}r
i=1≤{xi

0}r
i=1≤ . . . ≤{xi

n}r
i=1≤ {1̂}r

i=1

t−1 + t0 + . . . + tn +tn+1 = 1

)

�→
(

0̂i ≤ xi
0 ≤ . . . ≤ xi

n ≤ 1̂i

t−1 + t0 + . . . + tn +tn+1 = 1

)r

i=1

.

Proof. — This follows by observing the natural isomorphism of simplicial sets

N•(P1 × · · · ×Pr)/N•(P1×···×Pr)−[{0̂i }<{1̂i }] ∼=
∧

i

N•(Pi)/N•(Pi)
−[0̂i<1̂i ] . �

2.10. Explicit collapse. — Let P be a G-poset with distinct minimal element 0̂
and maximal element 1̂. Given a chain σ = [y0 < · · · < yr] in P = P − {0̂, 1̂}, we
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write St(σ ) for the star of σ in P . We represent points P in �2(|St(σ )|/|St(σ )−σ |) �
|0̂ ∗ St(σ ) ∗ 1̂|/|(0̂∗St(σ )∗1̂)−[0̂<σ<1̂]| by

( 0̂ <x0
0 < · · · < x0

n0
< y0 <x1

0 < · · · < x1
n1

< y1 < . . . < yr <xr+1
0 < · · · < xr+1

nr+1
< 1̂

s−1 + t00 + · · · + t0n0
+ s0 + t10 + · · · + t1n1

+ s1 + . . . + sr + tr+1
0 + · · · + tr+1

nr+1
+ sr+1 = 1

)

Such an expression represents the basepoint precisely if one of the parameters si vanishes.
We represent points in �|P (0̂,y0)

|� ∧�|P (y0,y1)|� ∧ · · ·∧�|P (yr ,1̂)|� by (r +2)-tuples

{(
yi−1 < zi

0 < . . . < zi
ni

< yi

�i
−1 + �i

0 + . . . + �i
ni

+ �i
ni+1 = 1

)}r+1

i=0

where we use the convention y−1 = 0̂ and yr+1 = 1̂. Such a tuple represents the basepoint
if some l i

−1 or l i
ni+1 vanishes. We now define �2(|St(σ )|/|St(σ )−σ |) → �|P (0̂,y0)

|� ∧ · · · ∧
�|P (yr ,1̂)|� by sending points P represented as above to

{(
yi−1 < xi

0 < . . . < xi
ni

< yi

si−1

Ci
+ ti

0

Ci
+ . . . + ti

ni

Ci
+ si

Ci
= 1

)}r+1

i=0

whenever all Ci := si−1 + ti
0 +· · ·+ ti

ni
+ si are nonzero for all i. If one of the Ci vanishes, we

map P to the basepoint. It is not hard to check that this map is well-defined, continuous,
cellular, Stab(y0) ∩ · · · ∩ Stab(yr)-equivariant, and that it has a continuous inverse.

Given a G-stable family S of strictly increasing chains in P such that no two chains
have a common refinement, we obtain an explicit description of the collapse maps in the
simple equivalence

�2(|P|/|P−S|)
∼=

∨

σ=[y0<···<yr ]∈S

�2|St(σ )|/|St(σ )−σ |

�−→
∨

σ=[y0<···<yr ]∈S

�|P (0̂,y0)
|� ∧ �|P (y0,y1)|� ∧ · · · ∧ �|P (yr ,1̂)|�

implied by Corollary 2.27. This doubly suspended collapse map is relevant in our appli-
cations to spectral Lie algebras. As in Section 2.8, it is G-equivariant, where h ∈ G acts
on the right by taking the wedge sum of action maps �|P (0̂,y0)

|� ∧ · · · ∧ �|P (yr ,1̂)|� →
�|P (0̂,h·y0)

|� ∧ · · · ∧ �|P (h·yr ,1̂)|�.
It is not hard to also give an explicit description of the unsuspended collapse map

|P|/|P−S|

−→
∨

σ=[y0<···<yr ]∈S

|P (0̂,y0)
|� ∧ �|P (y0,y1)|� ∧ · · · ∧ �|P (yr−1,yr)|� ∧ |P (yr ,1̂)|�.
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We represent points P in |St(σ )|/|St(σ )−σ | for σ = [y0 < · · · < yr] a chain by expressions
(

0̂ <x0
0 < · · · < x0

n0
< y0 <x1

0 < · · · < x1
n1

< y1 < . . . < yr <xr+1
0 < · · · < xr+1

nr+1
< 1̂

t00 + · · · + t0n0
+ s0 + t10 + · · · + t1n1

+ s1 + . . . + sr + tr+1
0 + · · · + tr+1

nr+1
= 1

)

.

The unsuspended collapse map then sends such a point P to the (r + 2)-tuple

{(
yi−1 < xi

0 < . . . < xi
ni

< yi

si−1

Ci
+ ti

0

Ci
+ . . . + ti

ni

Ci
+ si

Ci
= 1

)}r+1

i=0

whenever all Ci := si−1 + ti
0 +· · ·+ ti

ni
+ si are nonzero for all i, where we use the additional

convention that s−1 = sr+1 = 0. If one of the Ci vanishes, we again map P to the basepoint.
We used well-known models for the two unreduced suspensions |P (0̂,y0)

|� and |P (yr ,1̂)|�.
The unsuspended collapse maps again interact well with the action by G.

We will also often consider the collapse maps obtained by postcomposing the above
maps to wedge summands with the “projection” to an individual summand.

2.11. Spectra. — In our study of spectral Lie algebras, we shall use the closed sym-
metric monoidal model category (Sp,∧,S) of S-modules, endowed with the smash prod-
uct, as model for spectra (cf. [EKMM97]). We urge the reader to not get too distracted
by this refined homotopical notion as many of our later arguments will merely require
the homotopy category hSp of spectra.

There is an adjunction �∞ : Top∗ � Sp : �∞ whose left component �∞ is
monoidal. Given S-modules X,Y ∈ Sp, we let MapSp(X,Y) be the mapping spectrum
between X and Y and write D(X) = MapSp(X,S) for the Spanier-Whitehead dual of X.
Using the functor �∞, we can observe that the category Sp is both tensored and coten-
sored over Top∗. We will suppress �∞ from our notation whenever the context implies
that we are working in spectra. We will now establish two results which tell us that several
strict constructions are homotopically well-behaved:

Proposition 2.29. — Assume that the map f : X → Y of spectra is

(1) either obtained by applying �∞ to a weak equivalence of well-pointed spaces in Top∗
(2) or a weak equivalence with X cofibrant and Y a suspension spectrum of a well-pointed space.

Then D(f ) : D(Y) → D(X) is a weak equivalence of S-modules.

Proof. — Let Sc → S be a cofibrant replacement of the sphere spectrum.
For (1), Theorem 24.3.1 of [MS06] shows that Sc ∧ X → Sc ∧ Y is a weak

equivalence. The spectra Sc ∧ X, Sc ∧ Y are seen to be cofibrant by combining Theo-
rem VII.4.6. in [EKMM97] with Proposition 10.3.18(i) of [MS06]. Since S is fibrant,
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F(Sc ∧ X,S) → F(Sc ∧ Y,S) is a weak equivalence. The left horizontal arrows below are
weak equivalences by Lemma 4.2.7 of [Hov99]:

F(X,S)
�
> F(Sc,F(X,S))

∼=
> F(Sc ∧ X,S)

F(Y,S)
∨ �

> F(Sc,F(Y,S))
∨ ∼=

> F(Sc ∧ Y,S)

�∨

For claim (2), we first note that smashing with Sc preserves weak equivalences by Theo-
rem III.3.8. of [EKMM97] and then follow a parallel argument. �

Proposition 2.30. — Let X,Y ∈ Top∗ be well-pointed spaces. Fix weak equivalences from

cofibrant spectra D̃(Y) → D(Y), X̃ → X, Ỹ → Y. Then, we have:

(1) X̃ ∧ Ỹ → X ∧ Y is a weak equivalence in Sp.

(2) X̃∧ D̃(Y) → X∧D(Y) is a weak equivalence of spectra whenever X is a CW-complex.

Proof. — Let Sc → S be a cofibrant replacement. For (1), consider the square:

(Sc ∧ X̃) ∧ (Sc ∧ Ỹ)
�

> (Sc ∧ X) ∧ (Sc ∧ Y)

X̃ ∧ Ỹ

�∨
> X ∧ Y

�∨

The vertical arrows are weak equivalences by the very strong commutative monoid
axiom of [Mur15], asserting that smashing Sc → S with any spectrum gives a weak equiv-
alence. Theorem III.3.8. of [EKMM97] implies that smashing with Sc preserves weak
equivalences. The top horizontal arrow is a weak equivalence as it is obtained by smash-
ing two weak equivalences between cofibrant spectra (Sc ∧ X, Sc ∧ Y are cofibrant by the
same argument as in Proposition 2.29). For (2), we consider the diagram

(Sc ∧ X̃) ∧ D̃(Y)
�

> (Sc ∧ X) ∧ D̃(Y)
�

> (Sc ∧ X) ∧ D(Y)

X̃ ∧ D̃(Y)

�∨
> X ∧ D̃(Y)

�∨
> X ∧ D(Y)

�∨

The vertical arrows are equivalences as smashing with Sc → S preserves these. The top
right horizontal arrow is an equivalence by [EKMM97, Theorem III.3.8] as Sc ∧ X
is a cell S-module. The top left horizontal arrow is obtained by smashing weak equiv-
alences between cofibrant S-modules. �
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3. Complementary collapse

We will now present an algorithm which collapses large subcomplexes of order
complexes attached to lattices and thereby produces equivariant simple homotopy equiv-
alences to wedge sums of smaller spaces. Fix a finite group G throughout this section.

3.1. A reminder on discrete Morse theory. — We briefly review the basics of discrete
Morse theory:

Definition 3.1. — A G-equivariant matching on a simplicial G-complex (V,F) with fixed

point x consists of an equivalence relation ∼ on the face set F satisfying the following conditions:

• The relation ∼ is G-invariant, i.e. σ ∼ τ implies gσ ∼ gτ for all g ∈ G.

• Every equivalence class is either equal to {x} or has the form {σ−, σ+}, where σ− is a face

of codimension 1 of σ+.

Such a matching is acyclic if there does not exist a chain σ−
1 < σ+

1 > σ−
2 < σ+

2 > · · · > σ−
n < σ+

n >

σ−
1 with n > 1 and all σi distinct. The following is due to Forman [For98] and Freij [Fre09]:

Theorem 3.2. — If there exists a G-equivariant acyclic matching on a simplicial G-complex

X = (V,F) with fixed point x, then there is a G-equivariant collapse |X| �G {x}.

3.2. Complementary collapse against points. — A finite G-lattice P is a G-poset whose
underlying poset is a finite lattice, which means that every two elements x, y have a meet
x ∧ y and a join x ∨ y. Fix a finite G-lattice P and write P := P − {0̂, 1̂}, where 0̂ is the
least and 1̂ the largest element of P .

Definition 3.3. — The complement of a G-stable element x ∈P is given by

x⊥ := {y ∈P | x ∧ y = 0̂, x ∨ y = 1̂}.

Before stating complementary collapse in full generality, we present a special case:

Theorem 3.4. — If x ∈P is a G-stable vertex, then N(P)−x⊥ is G-equivariantly collapsible.

Here N(P)−x⊥ is the complex containing all simplices in N(P) which do not contain a vertex in x⊥.

Using Corollary 2.27 and Proposition 2.22, we immediately obtain:

Theorem 3.5. — If x ∈ P is a G-stable element for which x⊥ is discrete, then there are simple

homotopy equivalences of G-spaces

|P| −→
∨

y∈x⊥
|P<y|� ∧ |P>y|� −→

∨

[z]∈x⊥/G

IndG
Stab(z)(|P<z|� ∧ |P>z|�)
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Remark 3.6. — The contractibility of N(P)−x⊥ and the resulting branching rule is
originally due to Björner-Walker [BW83] in the nonequivariant and Welker [Wel90] in
the equivariant case. The collapsibility in the nonequivariant case also follows from work
by Kozlov [Koz98] on nonevasiveness.

3.3. Orthogonality fans. — We will now prove a generalisation of Theorems 3.4 and
3.5 in which the “reference simplex” x is allowed to vary across the poset. We introduce
some natural notation:

Notation 3.7. — Write FP for the collection of nonempty chains σ = [x0 < · · · < xn]
with xi ∈ P . Given any chain σ and any element z, we let σ<z denote the subchain of σ

spanned by all elements x in σ which satisfy x < z. We write σ < z if all elements x in σ

satisfy x < z and define [σ < z] to be the chain obtained by adding z to σ . We define the
subchain σ>z, the condition z < σ , and the chain [z < σ ] analogously.

If F :FP →P is any function and y ∈P , we can define two new functions

F≤y :F[0̂,y] → [0̂, y], F≥y :F[y,1̂] → [y, 1̂]
F≤y(σ ) := F(σ ) ∧ y, F≥y(σ ) := F([0̂ < σ ]) ∨ y

The variation of the reference simplex will be parametrised by the following structure:

Definition 3.8. — A list of functions (F1, . . . ,Fr) from FP to P is an orthogonality fan if

either r = 0 or

(1) Fi is G-equivariant and increasing for all i (i.e. y ≤ Fi(σ ) for all σ ∈FP and all y ∈ σ ).

(2) The subposet F1([0̂])⊥ is discrete.

(3) If F1([0̂]) �= 1̂, then we have for any y ∈ F1([0̂])⊥:

The list (F≤y

2 , . . . ,F≤y
r ) is an orthogonality fan on the Staby-lattice [0̂, y].

The list (F≥y

1 ,F≥y

2 , . . . ,F≥y
r ) is an orthogonality fan on the Staby-lattice [y, 1̂].

Definition 3.9. — A (possibly empty) chain σ = [y0 < · · · < yk] in P is said to be invisible

for some orthogonality fan F = (F1, . . . ,Fr) if r = 0, or F1([0̂]) = 1̂, or there is a (necessarily unique)

element y ∈ [σ < 1̂] with

(1) y ⊥ F1([0̂])
(2) σ<y is (F≤y

2 , . . . ,F≤y
r )-invisible

(3) σ>y is (F≥y

1 ,F≥y

2 , . . . ,F≥y
r )-invisible.

These two recursive definitions terminate. An F-invisible chain σ is said to be
F-orthogonal if it is minimally invisible, i.e. if none of its proper subchains are F-invisible.
Write σ ⊥ F and observe:

Lemma 3.10. — Every F-invisible chain σ contains a unique orthogonal chain.
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Proof. — Let τ1, τ2 be two orthogonal subchains of an F-invisible chain σ . If
F1([0̂]) = 1̂ or r = 0, then both τi are empty. Otherwise pick y in [σ < 1̂] with y ⊥ F1([0̂]).
Since τi is invisible for i = 1,2, the chain [τi < 1̂] must contain y. The chain τ

>y

i in σ>y

must be (F≥y

1 , . . . ,F≥y
r )-orthogonal. By induction, this implies τ

>y

1 = τ
>y

2 . Similarly, we
conclude that τ

<y

1 = τ
<y

2 . �

Before stating the main theorem of this section, we unravel this definition in two
cases of interest.

Example 3.11. — If the orthogonality fan F = (F1) consists of a single function,
then a chain σ = [y0 < · · · < yk] in P is (F1)-invisible if and only if there are indices
i1 < · · · < i� with

(1) For t = 1, . . . , �, we have

yit ∧ F1([0̂ < yi1 < · · · < yit−1]) = yit−1

yit ∨ F1([0̂ < yi1 < · · · < yit−1]) = 1̂

(2) F1([0̂ < yi1 < · · · < yi�]) ∈ {yi� , 1̂}.

The sequence [yi1 < · · · < yi�] is then orthogonal. We use the convention yi0 = 0̂.
For the empty sequence of indices (� = 0), the first two conditions are automatically satis-
fied whereas the third condition reads F1([0̂]) ∈ {0̂, 1̂}. The empty sequence is orthogonal
precisely if F1([0̂]) ∈ {0̂, 1̂}.

Example 3.12. — If F = (F1,F2), then σ = [y0 < · · · < yk] is (F1,F2)-invisible
if and only if there are j11 < · · · < j1m1

< i1 < j21 < · · · < j2m2
< i2 < · · · < i� < j�+1

1 < · · · <

j�+1
m�+1

such that:

(1) For t = 1, . . . , �, we have

yit ∧ F1([0̂ < yi1 < · · · < yit−1]) = yit−1

yit ∨ F1([0̂ < yi1 < · · · < yit−1]) = 1̂

(2) F1([0̂ < yi1 < · · · < yi�]) ∈ {yi� , 1̂}
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(3) For t = 1, . . . , � + 1 and s = 1, . . . ,mt , we have

yjts
∧
(

F2([0̂ < yi1 < · · · < yit−1 < yjt1
< · · · < yjts−1

]) ∧ yit

)

= yjts−1

yjts
∨
(

F2([0̂ < yi1 < · · · < yit−1 < yjt1
< · · · < yjts−1

]) ∧ yit

)

= yit

(4) For t = 1, . . . , � + 1, we have F2([0̂ < yi1 < · · · < yit−1 < yjt1
< · · · < yjtmt

]) ∧ yit ∈
{yjtmt

, yit }.

We use the conventions that yi0 = 0̂ and yjt0
= yit−1 for all t. Moreover, we set yi�+1 = 1̂ if

F1([0̂ < yi1 < · · · < yi�]) = yi� and yi�+1 = yi� if F1([0̂ < yi1 < · · · < yi�]) = 1̂.

We can now state the two main theorems of this section:

Theorem 3.13 (Complementary collapse against fans). — Let F be an orthogonality fan on a

finite G-lattice P with F1([0̂]) �= 0̂, 1̂. Let N(P)−F⊥
be the simplicial complex obtained from N(P)

by deleting all F-invisible chains. Then N(P)−F⊥
collapses G-equivariantly to the point F1([0̂]).

Theorem 3.14. — If F is an orthogonality fan on a finite G-lattice P with F1([0̂]) �= 0̂, 1̂,

there is a simple G-equivariant homotopy equivalence obtained by collapsing the subcomplex N(P)−F⊥
:

|P| �−→
∨

[y0<···<yr ]⊥F

|P (0̂,y0)
|� ∧ �|P (y0,y1)|� ∧ · · · ∧ �|P (yr−1,yr)|� ∧ |P (yr ,1̂)|�

Complementary collapse for fans can be used to deduce the weaker statements in
Theorem 3.4 and Theorem 3.5:

Proof of Theorems 3.4, 3.5. — Let x be a G-stable element in a finite G-lattice P .
Consider the function F with F([0̂]) = x and F(σ ) = 1̂ if σ �= [0̂]. If x⊥ is discrete, we
can apply Theorem 3.13 to the fan (F) consisting of only one function F. A chain σ is
F-invisible iff it contains some y ⊥ x and it is F-orthogonal iff it is of the form σ = [y]
for y ⊥ x. The general proof presented in Section 3.4 in fact demonstrates Theorem 3.4
without the assumption that x⊥ is discrete. �

Remark 3.15. — One could use Theorem 3.5 and induction to prove the mere
existence of the equivalence in Theorem 3.14. However, the equivalence produced in this
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way would not be easily accessible due to its inductive definition. On the other hand, the
equivalence asserted in Theorem 3.14 is obtained by collapsing a large subcomplex all at
once – the involved maps are therefore entirely transparent. Moreover, the collapsibility
of this large subcomplex asserted in Theorem 3.13 does not follow from Theorem 3.14,
but can be of independent interest.

Since the axiom (3) in Definition 3.8 is difficult to check, we introduce the follow-
ing simpler notion:

Definition 3.16. — Let G be a finite group and P a finite G-lattice with face set FP .

A function F :FP →P is called an orthogonality function if

(1) F is G-equivariant and increasing (i.e. y ≤ F(σ ) for all σ ∈FP and all y ∈ σ ).

(2) For all σ = [y0 < · · · < ym] ∈FP and any z > ym, the following subposet is discrete:

{ ym < t < z | t ∧ F(σ ) = ym , (t ∨ F(σ )) ∧ z = z }.
Orthogonality functions will provide us with many examples of orthogonality fans:

Lemma 3.17. — If F = (F1, . . . ,Fr) is a list of orthogonality functions, then F is an orthog-

onality fan in the sense of Definition 3.8.

Proof. — The first axiom of orthogonality fans is evidently satisfied. The second
axiom follows by condition (2) of Definition 3.17 for F1 with σ = [0̂] and z = 1. To
verify the third axiom, we fix some nonzero y ⊥ F1([0̂]). We observe that F≥y

i and F≤y

i are
again orthogonality functions for all i. By induction, this implies that (F≥y

1 ,F≥y

2 , . . . ,F≥y
r )

and (F≤y

2 , . . . ,F≤y
r ) are both orthogonality fans on the relevant lattices. �

3.4. Proof of complementary collapse against fans. — As before, let F = (F1, . . . ,Fr) be
an orthogonality fan on a finite G-lattice P . The following technical gadget will allow us
to “scan” a chain σ in order to find out whether or not it is F-invisible:

Definition 3.18. — The orthogonality tree TF(σ ) of a chain σ = [y0 < · · · < yk] in P is

an empty or planar rooted tree whose nodes w are labelled by pairs (Z ∈ Iw) consisting of an interval

Iw = [yα, yω] in P and a Stabyα ∩Stabyω - stable point Z ∈ Iw.

The tree is defined by the following recursion:

(1) If r = 0, then the tree is empty.

(2) Otherwise, we create a root v of the tree TF(σ ) and label it by (F1([0̂]) ∈ [0̂, 1̂]).
• If F1(0̂) = 1̂ or there does not exist a vertex of [σ < 1̂] lying in F1([0̂])⊥, stop.

• Otherwise, let y be the necessarily unique vertex of [σ < 1̂] in F1([0̂])⊥.

Let L be the orthogonality tree of the chain σ<y for the fan (F≤y

2 , . . . ,F≤y
r ).

Let R be the orthogonality tree of the chain σ>y for the fan (F≥y

1 ,F≥y

2 , . . . ,F≥y
r ).
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Here [0̂, y] and [y, 1̂] are considered as Stab(y)-lattices.

We create the labelled rooted planar tree TF(σ ) by declaring the root of L
to be the left child and the root of R to be the right child of v. Note that L may be

empty.

We call a vertex of the orthogonality tree a leaf if it has no children.

Example 3.19. — Assume that F consists of two functions (F1,F2). In the illustra-
tion in Example 3.12, we considered an invisible chain σ with yi1 < yi2 (indicated by long
bars) and for which yj11

< yj12
, yj21

< yj22
< yj23

, and yj31
< yj32

(indicated by short bars).
The orthogonality tree TF(σ ) of σ is drawn on the right. The leftmost dotted

node is included if F2([0̂ < yj11
< yj12

]) ∧ yi1) = yj12
. The existence of the two other dotted

nodes depends on similar conditions.

Definition 3.20. — Let σ be a chain and w a leaf of TF(σ ) with label (Z ∈ [yα, yω]). The

simplex σ is said to be F-invisible at w if we have Z = yω.

Lemma 3.21. — A chain σ is invisible for an orthogonality fan F (cf. Definition 3.9) if σ is

F-invisible at every leaf w of its orthogonality tree TF(σ ) (cf. Definition 3.20).

Proof. — If r = 0 or F1([0̂]) = 1̂, then the equivalence is obvious, and we may
therefore assume without restriction that F1([0̂]) �= 1̂.

Suppose σ is F-invisible. Then there is a vertex y in [σ < 1̂] with y ⊥ F1([0̂])
such that σ>y is (F≥y

1 , . . .F≥y
r )-invisible and such that σ<y is (F≤y

2 , . . .F≤y
r )-invisible. By

induction, this happens if and only if the two orthogonality trees L and R used in the
definition of TF(σ ) only have invisible leaves, which in turn is equivalent to TF(σ ) only
having invisible leaves. �
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The next two statements follow by similarly straightforward inductions:

Lemma 3.22. — If σ ≤ τ is a subsimplex, then TF(σ ) ≤ TF(τ ) is naturally a (labelled)

subtree.

Lemma 3.23. — Fix a simplex σ with tree TF(σ ) whose leaf w ∈ TF(σ ) has label

(Z ∈ [yα, yω]).
• Adding x ∈ (yα, yω) to σ with x ∧ Z �= yα or x ∨ Z �= yω gives a σ+ ≥ σ with equal tree.

• Removing x ∈ (yα, yω) from σ gives a simplex σ− ≤ σ with equal tree.

We can now prove complementary collapse for fans:

Proof of Theorem 3.13. — We define a G-equivariant perfect matching with fixed
point F1([0̂]) (cf. Definition 3.1). Fix a nondegenerate �-simplex σ = [y0 < · · · < yk] in
N(P)−F⊥

other than F1([0̂]). Let w = wσ be the leftmost leaf of the orthogonality tree
TF(σ ) such that σ is not F-invisible at w (it exists by Lemma 3.21). Write (Z ∈ [yα, yω])
for the label of w. Since σ is not F-invisible at w, we have strict inequalities yα < Z < yω.
We use the convention that y−1 = 0̂ and yk+1 = 1̂.

Let i ≥ α be the largest index with yi ∧ Z = yα. Note that i < ω and observe that
yi ∨ Z < yω as otherwise w would not be a leaf. Let j ≥ i be maximal with yj ≤ yi ∨ Z. We
have j < ω.

We call (i, j,T) = (i(σ ), j(σ ),TF(σ )) the structure triple of σ .
The element (yi ∨ Z) ∧ yj+1 is larger than yα since it contains yj+1 ∧ Z and smaller

than yω as it is contained in yi ∨ Z < yω.
If yj < (yi ∨ Z) ∧ yj+1, match σ and

σ+ := [. . . < yα < · · · < yj < ((yi ∨ Z) ∧ yj+1) < yj+1 < · · · ].
If yj = (yi ∨ Z) ∧ yj+1, match σ and

σ− := [. . . < yα < · · · < yj−1 < yj+1 < · · · ].
In the first case, consider the orthogonality tree of σ+. As yα < ((yi ∨Z)∧ yj+1)∧Z,

we know by Lemma 3.23 that σ and σ+ have the same orthogonality tree. Hence w is
also the leftmost non-invisible node of the orthogonality tree for σ+ and it is also labelled
by (Z ∈ [yα, yω]). We now observe that i(σ+) = i(σ ), j(σ+) = j(σ )+1, hence (σ+)− = σ .

In the second case, we first observe that j > i as otherwise we would have yi =
(yi ∨ Z)∧ yi+1 which is absurd as yα = yi ∧ Z and yα < ((yi ∨ Z)∧ yi+1)∧ Z. We therefore
remove a vertex yj in the open interval (yα, yω) and again conclude by Lemma 3.23 that
the orthogonality trees of σ and σ− are equal. We therefore have i(σ−) = i(σ ), j(σ−) =
j(σ ) − 1, and T(σ ) = T(σ−). We conclude that (σ−)+ = σ . We have thus defined a
matching with fixed point F(0̂), and it is evidently G-equivariant.
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To see that the matching is acyclic, assume for the sake of contradiction that we are
given a cycle σ1 < σ+

1 > σ2 = dt1(σ
+
1 ) < σ+

2 > σ3 = dt2(σ
+
2 ) < . . . σ+

N > σ1 = dtN(σ+
N )

of distinct nondegenerate simplices in N(P)−F⊥
for N > 1. Here dt denotes the tth face

map which forgets the tth element of a given chain.
Let (is, js,Ts) be the structure triple of σs. We have observed above that the triple

attached to σ+
s is (is, js + 1,Ts). By Lemma 3.22, we have Ts+1 ≤ Ts. Since the above is

a cycle, the orthogonality tree Ts must therefore be constantly equal to T, say. Let w be
the leftmost non-invisible node of T with label (Z ∈ [yα, yω]).

We will now examine how i and j change as s increases. Fix s. By definition, the
number is+1 is the largest number with α < is+1(< ω) such that the is+1-th vertex of
σs+1 = dts(σ

+
s ) intersects Z in yα.

Since σs+1 �= σs, we know that ts �= js + 1. If ts ≤ is then is+1 = is − 1. If ts > is and
ts �= js + 2, then σs+1 is an upper simplex in the matching, a contradiction. If ts = js + 2,
then (is+1, js+1) = (is, js + 1).

The function (is, js,Ts) therefore cannot visit the same point twice – the above
cycle cannot exist. �

Proof of Theorem 3.14. — Combine Theorem 3.13, Proposition 3.10, and Corol-
lary 2.27. �

4. Lie algebras and the partition complex

We will now discuss the connection between partition complexes |�n| and the
theory of classical and spectral Lie algebras. Moreover, we shall explain some straightfor-
ward algebraic consequences of our later topological results on Young restrictions of |�n|
in Section 5.1.

4.1. Free Lie algebras. — We begin by recalling the following basic notion:

Definition 4.1. — A Lie algebra (over Z) is an abelian group g together with a binary

operation [−,−] satisfying [u, v] = −[v, u] and [u, [v,w]] + [w, [u, v]] + [v, [w, u]] = 0
for all u, v,w ∈ g.

Given an abelian group V, we let Lie[V] be the free Lie algebra generated by V.
If V is free with Z-basis {cs}s∈S, we write Lie[S], and if S = k = {1, . . . , k}, we will use the
notation Lie[c1, . . . , ck].

In fact, Lie[S] can be constructed as the quotient of the free non-associative and
non-unital algebra on {cs}s∈S by the two-sided ideal generated by the antisymmetry and
the Jacobi relation.

Throughout the paper, monomials are understood to be in non-commutative and
non-associative variables. We will also refer to them as parenthesised monomials. Ele-
ments of Lie[S] can be represented as linear combinations of parenthesised monomials
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in the letters {cs}s∈S. As is customary in the context of Lie algebras, we will use square
brackets to indicate the parenthesisation. For example, the monomial [[c1, [c2, c1]], c2]
represents an element of Lie[c1, c2].

The symmetric group �S acts additively on Lie[S]: given a monomial w in let-
ters {cs}s∈S and a permutation h ∈ �S, the monomial h · w is obtained by replacing each
occurrence of cs by ch(s).

Definition 4.2. — A monomial in the Lie algebra Lie[c1, . . . , ck] has multi-degree (n1, . . . , nk)

if it contains ni copies of the letter ci for all i. For example, [[c1, [c2, c1]], c2] has multi-degree (2,2).

There is a second common notion of Lie algebras over the integers:

Definition 4.3. — A totally isotropic Lie algebra (over Z) is an abelian group g with a

binary operation [−,−] satisfying [u, u] = 0 and [u, [v,w]] + [w, [u, v]] + [v, [w, u]] = 0
for all u, v,w ∈ g.

Remark 4.4. — Some sources use the term “Lie algebra” for what we call “totally
isotropic Lie algebra”, and the term “quasi-Lie algebra” for what we call “Lie algebra”.

Write Liei[V] for the free totally isotropic Lie algebra on an abelian group. If V is
free on some set S, we use the notation Liei[S], and if S = k, we write Liei[c1, . . . , ck]. It
is evident that the free Lie algebra Lie[V] on an abelian group V maps to the free totally
isotropic Lie algebra Liei[V] on V.

Totally isotropic Lie algebras have the property that the free totally isotropic Lie
algebra Liei[V] on a free abelian group V is again a free abelian group (cf. [Reu03,
Corollary 0.10]). This is not true for free Lie algebras in the sense of Definition 4.1. For
example, the free Lie algebra Lie[c1] on one generator c1 has underlying Z-module Z ⊕
Z/2 generated by c1 and [c1, c1] with 2[c1, c1] = 0.

However, totally isotropic Lie algebras are overly restrictive in our context: first,
they cannot be defined as algebras over an operad. Moreover, several natural examples
of interest (related to algebraic André-Quillen homology groups or spectral Lie algebras
over F2, cf. [Goe90], [Cam20]) only satisfy the weaker antisymmetry axiom [u, v] =
−[v, u]. We will therefore focus on Lie algebras.

4.2. Lyndon words. — We will use the following classical notion (cf. [Shi58],
[CFL58]):

Definition 4.5. — A word w in letters c1, . . . , ck is a (weak) Lyndon word if it is (weakly)

smaller than any of its cyclic rotations in the lexicographic order with c1 < · · · < ck. Write B(n1, . . . , nk)

(or Bw(n1, . . . , nk)) for the set of (weak) Lyndon words which involve ci precisely ni times.
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A Lyndon word w of length � > 1 can be written uniquely as w = uv with u < v

both Lyndon words and u as long as possible – this is the (left) standard factorisation. Given
any two Lyndon words u < v, the word w = uv is again a Lyndon word. The factorisation
w = uv is standard if and only if v is a letter or it has standard factorisation v = xy with
x ≤ u.

There is a unique injection φ from the set of Lyndon words in c1, . . . , ck

to Lie[c1, . . . , ck] sending each letter ci to ci ∈ Lie[c1, . . . , ck] and satisfying φ(w) =
[φ(u),φ(v)] for each standard factorisation w = uv. Elements in the image of φ are
called basic monomials, and we will often identify Lyndon words with their image under φ.

Remark 4.6. — Basic monomials do not generate Lie[c1, . . . , ck] due to the presence
of self-brackets. However, their images under Lie[c1, . . . , ck] →Liei[c1, . . . , ck] form a Z-
basis (cf. [Reu03]).

Any weak Lyndon word w can be written uniquely as w = ud with u a Lyn-
don word. We call d the period of w. This gives an identification Bw(n1, . . . , nk) =∐

d|gcd(n1,...,nk)
B( n1

d
, . . . , nk

d
).

Now let S be a finite set and assume g : S → {1, . . . , k} is a map whose fibre Ci

over i has size ni.

Definition 4.7. — An (S, g)-labelling of a weak Lyndon word w = ud in letters c1, . . . , ck is

represented by a bijection f from S to the letters of w with the property that for each s ∈ Ci , the symbol

f (s) is ci . Two bijections are considered to represent the same labelling if one can be obtained from the

other by permuting the various copies of u in w.

Write Bw
(S,g)(n1, . . . , nk) for the set of (S, g)-labelled weak Lyndon words in Bw(n1, . . . , nk).

This set comes endowed with a natural (left) �C1 × · · · × �Ck
-action: given a permutation h and a

weak Lyndon word w whose labelling is represented by the bijection f from S to the letters of w, we form

a new labelled word h · w by changing f to f ◦ h−1.

Labelled words can be used to define multilinear monomials containing each gener-
ator once:

Definition 4.8. — Let w be a Lyndon word with an (S, g)-labelling represented by

the bijection f . The (S, g)-resolution w̃f ∈ Lie[S] of w is represented by the multilinear monomial

obtained from w by replacing each letter in w with its preimage in S under f .

We observe that this resolution procedure intertwines the action on labels in Definition 4.7 with

the action on words in Section 4.1, i.e. if h ∈ �C1 × · · · × �Ck
, then h · w̃f = h̃ · wh−1(f )

.

Remark 4.9. — Given a decomposition n1 +· · ·+ nk = n, there is a standard choice
for (S, g): we take S = n = {1, . . . , n} for n =∑ ni and use the unique order-preserving
map g : n → k with |g−1(i)| = ni for all i. We write Bw

n (n1, . . . , nk) := Bw
(S,g)(n1, . . . , nk).



THE ACTION OF YOUNG SUBGROUPS ON THE PARTITION COMPLEX 81

The quotient of Bw
(S,g)(n1, . . . , nk) by the group �n1 × · · · × �nk

can be identified with the
set of weak Lyndon words Bw(n1, . . . , nk) =∐d|gcd(n1,...,nk)

B( n1
d
, . . . , nk

d
) containing the ith

generator ni times.
Each orbit in the �n1 ×· · ·×�nk

-set Bw
n (n1, . . . , nk) contains a unique labelled weak

Lyndon word w = ud with the property that for each copy of u, all labels are congruent
mod d and increase on all occurrences of a letter ci in this copy from left to right. We call
this the standard labelling of the underlying weak Lyndon word w = ud . The various copies
of u then partition n as S1 = {1, d + 1, . . .}, S2 = {2, d + 2, . . .}, . . . . via the labelling. The
stabiliser of w in Bw

(S,g)(n1, . . . , nk) is equivalent to �d , which is embedded diagonally as

�d → �
n
d

d → �n1 × · · · × �nk
.

4.3. The algebraic Lie operad.

Definition 4.10. — Given a finite set S, the Lie representation LieS of the symmetric group �S

is given by the submodule of Lie[S] spanned by all words which contain each generator cs once.

It is well-known that LieS is a free abelian group. The �S-modules LieS assem-

ble to the Lie operad. Hence every bijection
∐

i∈D Si

φ→ S gives rise to a homomorphism
sφ : LieD ⊗⊗i∈D LieSi

→ LieS which is natural in the bijection φ and with respect to
permutations of the sets Si .

Let us describe the map sφ explicitly. Recall that LieS is generated by multilin-
ear monomials in variables {cs}s∈S. Let wD ∈ LieD and { wSi

∈ LieSi
| i ∈ D } be repre-

sented by monomials. Then sφ(wD ⊗⊗i∈D wSi
) ∈ LieS is obtained by taking wd , substi-

tuting the monomial wSi
for the variable corresponding to i ∈ D, and finally replacing

each letter cs with s ∈ Si by the letter cφ(s).

Remark 4.11. — Lie algebras in the sense of Definition 4.1 are just algebras over
the Lie operad (cf. [Fre], 1.1.11.). The well-known formula for a free algebra over an

operad gives a natural isomorphism ε : ⊕n Lien ⊗Z[�n]V
⊗n

∼=−−→ Lie[V] (cf. [MSS07],
Propositions 1.25., 1.27.).

If w is a multilinear monomial in letters c1, . . . cn, then ε sends w ⊗ v1 ⊗ · · ·⊗ vn to
w(v1, . . . , vn).

4.4. The algebraic branching rule. — We will now explain an algebraic branching rule
for the �n-module Lien, which will follow from our later topological Theorem 5.10 by
applying homology.

Fix a decomposition n = n1 + · · · + nk . Let S = n and g : n → k be order-
preserving with |g−1(i)| = ni . Suppose w = ud ∈ Bw

n (n1, . . . , nk) is an n-labelled weak Lyn-
don word with period d . The different copies of u in w induce a partition n =∐Si∈dw

Si

via the labelling. Here dw denotes the set of classes of this partition. It has cardinality d ,
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but no preferred identification with d = {1, . . . , d}. For each Si ∈ dw, we can restrict the
labelling f on w to an (Si, g|Si

)-labelling fi on u and form a word ũfi ∈ LieSi
by replacing

each cj with j ∈ k by the corresponding cs for s ∈ Si .
Let θw : Liedw

→ Lien be defined as follows: given a multilinear monomial wd ∈
Liedw

in letters {cSi
}Si∈dw

, replace each cSi
in wd with ũfi . The group �dw

acts naturally on
Liedw

. It acts on n (and hence Lien) by letting h ∈ �dw
send x ∈ Si to the unique h ·x ∈ h(Si)

for which x and h · x label corresponding letters in the respective copies of u. The map θw

is �dw
-equivariant.

Example 4.12. — For n1 = n2 = 4 and d = 2, consider the n-labelled Lyndon word
w = u2 given by

1 3 5 7 2 4 6 8
c1 c1 c2 c2 c1 c1 c2 c2

The Lyndon word u corresponds to [[c1, [c1, c2]], c2] ∈ B(2,2). The induced partition on
8 has classes S1 = {1,3,5,7} and S2 = {2,4,6,8}. The group �d2

∼= �2 acts on 8 via
(1,2)(3,4)(5,6)(7,8).

The homomorphism θw : Lie2 → Lie8 is defined follows. Suppose w2(cS1, cS2) is
a monomial representing an element of Lied2 . Then w2 is sent to w2([[c1, [c3, c5]], c7],
[[c2, [c4, c6]], c8]). In particular our �2-equivariant homomorphism acts as follows on
words of length 2:

[c2, c1] �→ [[[c2, [c4, c6]], c8], [[c1, [c3, c5]], c7]]
[c1, c2] �→ [[[c1, [c3, c5]], c7], [[c2, [c4, c6]], c8]].

Summing up θw over all labelled weak Lyndon words w, we obtain an equivari-
ant homomorphism

⊕
θw :⊕w∈Bw

n (n1,...,nk)
Liedw

−→ Lien, where �n1 × · · · ×�nk
acts on

the left as follows: given a permutation h and a word wd ∈ Liedw
, define h · wd ∈ Liedh·w

by replacing the letter cSi
corresponding to Si ∈ dw by the letter ch(Si) corresponding to

h(Si) ∈ dh·w. As before, h · w is the labelled weak Lyndon word obtained from w by pre-
composing the labelling with h−1 (cf. Definition 4.7).

Example 4.13. — In the above Example 4.12, take h = (124)(68). Then h · w is

2 3 5 7 4 1 8 6
c1 c1 c2 c2 c1 c1 c2 c2

Hence h · ([cS2, cS1] ∈ Liedw

)= ([ch(S2), ch(S1)] ∈ Liedh·
)

for h(S1) = {2,3,5,7} and h(S2) =
{1,4,6,8}.

The following is proven in Section 5.2 by applying homology to Theorem 5.10:
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Lemma 4.14 (Algebraic branching rule). — The map
⊕

θw gives �n1 × · · · × �nk
-

isomorphisms
⊕

d|gcd(n1,...,nk)

⊕

u∈B
( n1

d ,...,
nk
d

)
Z[�n1 × · · · × �nk

] ⊗
Z[�d ]

Lied

∼=−→
⊕

w∈Bw
n (n1,...,nk)

Liedw

∼=−→ Lien .

4.5. The algebraic Hilton-Milnor theorem. — In topology, the Hilton-Milnor theorem
is a homotopy decomposition of the space ��(X1 ∨ · · ·∨Xk) as a weak product indexed
by basic monomials in k variables X1, . . . ,Xk . Equivalently, one can read the theorem as a
homotopy decomposition of the pointed free topological group generated by X1, . . . ,Xk ,
where Xi are connected spaces.

The free Lie algebra over Z (in the sense of Definition 4.1) on a direct sum has an
analogous decomposition, which we will call the algebraic Hilton-Milnor theorem. There
are differences between the two versions: the algebraic version gives an isomorphism,
rather than an equivalence, and it does not require a connectivity hypothesis. In our later
Corollary 5.13, we will in fact generalise the algebraic Hilton-Milnor theorem to spectral
Lie algebras.

We fix free abelian groups V1, . . . ,Vk and an order-preserving map g : m → k
with mi = |g−1(i)|. Every Lyndon word u ∈ B(m1, . . . ,mk) has a unique (m, g)-labelling
for which the labels of each letter ci increase from left to right in u. Write ũ for the cor-
responding resolution (cf. Definition 4.8). We define a map of abelian groups βu : V⊗m1

1 ⊗
· · · ⊗ V⊗mk

k →Lie[V1 ⊕ · · · ⊕ Vk] by setting βu(⊗k
i=1 ⊗mi

j=1 v
j

i) = ũ(v1
1, v

2
1, . . . , v

m1
1 , v1

2, . . . ,

v
m2
2 , . . . , v1

k , . . . , v
mk

k ), where v
j

i ∈ Vi . Since ũ is multilinear, this homomorphism is well-
defined.

Example 4.15. — The Lyndon word u = [[c1, [c1, c2]], c2] determines the group
homomorphism βu : V⊗2

1 ⊗ V⊗2
2 → Lie[V1 ⊕ V2] defined by βu(v

1
1 ⊗ v2

1 ⊗ v1
2 ⊗ v2

2) =
ũ(v1

1, v
2
1, v

1
2, v

2
2) = [[v1

1, [v2
1, v

1
2]], v2

2].
The map βu extends to a map of Lie algebras β̃u : Lie[V⊗m1

1 ⊗ · · · ⊗ V⊗mk

k ] →
Lie[V1 ⊕ · · · ⊕ Vk]. Using the algebraic branching rule in Lemma 4.14, we can deduce
the following result:

Theorem 4.16 (Algebraic Hilton-Milnor theorem). — The homomorphism of abelian groups

⊕ β̃u :
⊕

m1,...,mk≥0
u∈B(m1,...,mk )

Lie[V⊗m1
1 ⊗ · · · ⊗ V⊗mk

k ] →Lie[V1 ⊕ · · · ⊕ Vk]

obtained by taking the direct sum of all maps β̃u is an isomorphism.
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Proof. — We construct a commutative square
⊕

m1,...,mk≥0
u∈B(m1,...,mk )

⊕

d≥1

Lied ⊗
�d

(V⊗m1
1 ⊗ · · · ⊗ V⊗mk

k )⊗d >
⊕

n≥1

Lien ⊗
�n

(V1 ⊕ · · · ⊕ Vk)
⊗n

⊕

m1,...,mk≥0
u∈B(m1,...,mk )

Lie[V⊗m1
1 ⊗ · · · ⊗ V⊗mk

k ]
∨ ⊕β̃u

> Lie[V1 ⊕ · · · ⊕ Vk]
∨

The vertical isomorphisms are given by our operadic description of free Lie algebras.
The top map on the summand corresponding to m1, . . . ,mk , u ∈ B(m1, . . . ,mk), d ≥ 1 is
obtained as follows. First, apply �dm1 × · · ·×�dmk

-orbits to the following map induced by
algebraic branching for Lien:

(Z[�dm1 × · · · × �dmk
] ⊗

Z[�d ]
Lied) ⊗ (V⊗m1

1 ⊗ · · · ⊗ V⊗mk

k )⊗d

−→ Lien ⊗V⊗dm1
1 ⊗ · · · ⊗ V⊗dmk

k

Here n = dm1 + · · · + dmk . Then compose with Lien ⊗Z[�dm1×···×�dmk
](V

⊗dm1
1 ⊗ · · · ⊗

V⊗dmk

k ) → Lien ⊗�n
(V1 ⊕ · · · ⊕ Vk)

⊗n. A routine diagram chase shows that the square in
question commutes. The top horizontal map is an isomorphism by the algebraic branch-
ing rule in Theorem 4.14. �

Remark 4.17. — There is a corresponding decomposition for totally isotropic Lie
algebras, which is folklore and can, for example, be easily deduced from Example 8.7.4
in Neisendorfer’s book [Nei10].

4.6. The spectral Lie operad. — There is a close connection between the Lie repre-
sentation and the cohomology of the partition complex: given a finite set S, there is an iso-
morphism of �S-representations LieS

∼= sgnS ⊗ H̃
|S|−1

(�|�S|�,Z), where sgnS denotes
the sign representation. This was first proven by H. Barcelo [Bar90] and later gener-
alised, and perhaps simplified, by Wachs [Wac98]. Salvatore [Sal98] and Ching [Chi05]
have subsequently endowed the collection of spectra {MapSp(S

1, (S1)∧S) ∧ D(�|�S|�)}S

with the structure of an operad in a way that is compatible with the operad structure on
{LieS}S.

We will now explain these relations. Let PS be the poset of partitions of S, so that
�S =PS − {0̂, 1̂}. The group �S acts by letting a permutation h ∈ �S send a partition∐

i Si to the partition
∐

i h(Si).
For |S| > 1, we use the simplicial model N•(PS)/N•(PS−0̂)∪N•(PS−1̂) for �|�S|� (cf.

Section 2.9). For |S| = 1, we model �|�S|� = S0 by the simplicial 0-circle. The set of k-
simplices of the simplicial model for �|�S|� is given by {[0̂ ≤ x1 ≤ · · · ≤ xk−1 ≤ 1̂]}∐{∗},
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i.e. by the set of all chains starting in 0̂ and ending in 1̂ together with an additional
basepoint ∗.

In order to prove LieS
∼= sgnS ⊗ H̃

|S|−1
(�|�S|�,Z) ∼= H̃0(MapSp(S

1, (S1)∧S) ∧
D(�|�S|�),Z) and construct the operadic structure maps, we recall the language of
weighted trees from [Chi05]:

Definition 4.18. — A (rooted) tree consists of a finite poset T containing a unique minimal

element r, the root, and another element b > r with b ≤ t for all t ∈ T − {r}, such that:

(1) If u, v, and t are any elements of T with u ≤ t and v ≤ t, then u ≤ v or v ≤ u.

(2) If t, u are elements in T with t < u and r �= t, then there exists a v with t < v and u � v.

Maximal elements are called leaves. Elements which are neither roots nor leaves are internal nodes. An

edge is an inequality (u < v) such that there does not exist a t with u < t < v. Given t ∈ T, write i(t)

for the set of incoming edges (t < v). A planar structure on T is given by a total order on each of the sets

i(t) of incoming edges. The tree T is binary if every internal node has two incoming edges. Given a set S,

an S-labelling on T is a bijection ι from S to the set of leaves of T.

A weighting on T consists of an assignment of nonnegative numbers to all edges of T such that the

“distance” from the root to any leaf is 1. Write w(T) ⊂ [0,1]{edges of T} for the space of all weightings

and ∂w(T) for the subspace of weightings which have at least one vanishing weight.

Weighted S-labelled trees can be used to model the space �|�S|�. Starting with
the simplicial model introduced above, we observe that points in �|�S|� are either equal
to the basepoint or can be represented by pairs of the form ([0̂ = x0 ≤ x1 ≤ · · · ≤ xk−1 ≤
xk = 1̂], t0 + · · · + tk = 1).

• Given a chain of partitions σ = [0̂ = x0 ≤ x1 ≤ · · · ≤ xk−1 ≤ xk = 1̂] of S, we
let Tσ be the set of equivalence classes of all partitions xi that are not classes in
the preceding partition xi−1 (here x−1 has no classes by convention), partially or-
dered under refinement from coarsest to finest, together with an additional minimal
element r, the root. This poset is a tree and it carries a canonical S-labelling.

• Given (t0, . . . , tk) ∈ [0,1]k with t0 +· · ·+ tk = 1, we give Tσ the unique weighting
for which the distance from the root r to each class in xi is precisely ti + · · · + tk .
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Clearly, different weighted S-labelled trees can represent the same point in the space
�|�S|�. In particular, any tree with weight 0 on a leaf edge or the root edge represents
the basepoint.

Given a permutation h ∈ �S and an S-labelled weighted tree T, we define a new
S-labelled weighted tree h · T by precomposing the labelling function from S to the set
of leaves with h−1; in other words, we replace each label s ∈ S by h(s). This gives a con-
crete description of the �S-action on �|�S|� induced by the �S-action on the poset of
partitions �S.

In order to define spectral Lie algebras, we need one further ingredient from [Chi05]:

Definition 4.19. — Assume that we are given a bijection of finite sets φ : ∐i∈D Si

∼=−−→ S.

Let T be an S-labelled weighted tree representing a point in �|�S|�. The ungrafting map

uφ : �|�S|� −→ �|�D|� ∧
∧

Si∈D

�|�Si
|�

has the following two properties:

(1) If we can find “partitioning edges” {(v−
i < vi)}i∈D such that for each i ∈ D, the leaf labels

above vi are given by φ(Si), then we create a tree T′ by removing all vertices and edges from

T which lie above the upper vertex vi of any partitioning edge. Weight T′ by giving “non-

partitioning” edges the same weights as in T and then scaling the weights of the partitioning

edges {(v−
i < vi)}i∈D appropriately. For each i ∈ D, we label the leaf vi in T′ by i ∈ D.

Furthermore, for each i ∈ D, we create an Si -labelled weighted tree Ti from T by

only taking those vertices and edges in T which lie above the lower vertex v−
i of the ith

partitioning edge (v−
i < vi) and then simultaneously scaling the weights inherited from T

appropriately.

The ungrafting map uφ sends T to the point represented by (T′, {Ti}i∈D).

(2) If, on the other hand, such partitioning edges cannot be found, then the ungrafting map uφ

sends an S-labelled weighted tree T to the basepoint.

Definition 4.20. — Given a nonempty finite set S, set

LieS := MapSp(S
1, (S1)∧S) ∧ D(�|�S|�).

For S = ∅, define Lie∅ = 0. This assignment gives a symmetric sequence, i.e. a functor from the category

Fin∼= of finite sets and bijections to Sp: given a bijection f : S1
∼=−→ S2, define LieS1

Lief−−→ LieS2 by

smashing (S1)∧f : (S1)∧S1 → (S1)∧S2 with D(�|�f −1 |� : �|�S2 |� → �|�S1 |�).
We endow Lie with the structure of an operad as follows: given a bijection φ : ∐i∈D Si

∼=→ S,

define μ : LieD ∧∧i∈D LieSi
−→ LieS as the composite
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(

MapSp(S
1, (S1)∧D) ∧ D(�|�D|�)

)

∧
∧

i∈D

(

MapSp(S
1, (S1)∧Si) ∧ D(�|�Si

|�)
)

MapSp(S
1, (S1)∧D) ∧

∧

i∈D

MapSp(S
1, (S1)∧Si) ∧ D(�|�D|�) ∧

∧

i∈D

D(�|�Si
|�)

∨

MapSp(S
1, (S1)∧S) ∧ D(�|�S|�)

∨

The top map is simply given by reordering factors. The left component of the lower map is given in an

evident manner by “plugging in”. The right component of the lower map is obtained by applying D(−)

to the “ungrafting map” uφ : �|�S|� −→ �|�D|� ∧∧i∈D �|�Si
|� defined above.

The spectral Lie operad Lie is a cofibrant replacement of Lie in the model category of constant-

free operads in Sp ([BB17], cf. also Proposition 3.6.(2) in [Cav]).

In particular, there is a map Lie → Lie of operads in Sp which is a trivial fibration in the

functor category Fun(Fin∼=,Sp). The spectral Lie operad Lie is �-cofibrant (cf. [BM03, Proposition

4.3]), which means that it is cofibrant in the projective model structure on Fun(Fin∼=,Sp). This implies

that the associated monad X �→⊕
n Lien ∧�n

X∧n on Sp preserves weak equivalences.

We let AlgLie(Sp) be the ∞-category of algebras for the induced monad FreeLie on the underlying

∞-category Sp of Sp. Its objects are called spectral Lie algebras. The induced monad on the homotopy

category hSp is simply given by X �→⊕
n Lien ∧h�n

X∧n.

4.7. Algebraic vs. spectral Lie operad. — We will construct a �S-equivariant isomor-
phism LieS

∼= π0(LieS) ∼= H̃0(LieS,Z) ∼= H̃0(LieS,Z) and show that it is compatible
with the operadic structures. The existence of such an isomorphism was established ab-
stractly via Koszul duality in Example 9.50 of [Chi05] – we shall give an explicit con-
struction. For the rest of this section, we will work in the homotopy category hSp of spectra.
Here LieS and LieS are canonically isomorphic.

Let T be a binary S-labelled tree whose partial order is denoted by ≺. Write
(�|�S|�)T ⊂ �|�S|� for the open subspace of all points which can be represented by
an S-labelled weighted tree that has nonzero weights on all edges and is isomorphic
to T (as an S-labelled tree). Specifying a point in (�|�n|�)T is equivalent to giving
a weight in w(T) all of whose components are positive. There is a homeomorphism
(�|�S|�) /�|�S|�−(�|�S|�)T

∼= w(T)/∂w(T).
Fix a binary planar S-labelled tree T. We define the standard order < (refining ≺) on

the non-root nodes v1 < · · · < v2|S|−1 of T by first listing the vertex above the root, then
the non-root nodes of the left subtree TL (ordered by recursion), and finally the non-root
nodes of the right subtree TR (ordered by recursion). Consider the subspace V ⊂ R2|S|−1
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cut out by the following equations
{

xi1 + · · · + xik = 1 whenever (r ≺ vi1), (vi1 ≺ vi2), . . . , (vik−1 ≺ vik)

are edges of T and vik is a leaf
}

The space V is an intersection of transversely intersecting hyperplanes (cf. Lemma 3.9
in [Chi05]) and hence has dimension dim(V) = |S| − 1. There is a natural identification
w(T) ∼= [0,1]2|S|−1 ∩V. Consider the map [0,1]|S|−1 ∼= {(t1, . . . , t2|S|−1) ∈ [0,1]2|S|−1 | ti =
1 if vi is a leaf in T} −→ w(T)

{ti}2|S|−1
i=1 �→

{

ti ·
∏

vj≺vi

(1 − tj)

}2|S|−1

i=1

.

In other words, we send a tuple (t1, . . . , t2|S|−1) to the unique weighting on T with the
property that if vi is the ith node (in standard order) with parent v−

i ≺ vi , then the ratio
d(v−

i ,vi)

1−d(r,v−
i )

between the distance from v−
i to vi and the distance from v−

i to any leaf above vi

is exactly ti . Passing to quotients by the respective boundaries gives rise to a homeomor-
phism S|S|−1 ∼= w(T)/∂w(T).

Definition 4.21. — Let T be a binary planar S-labelled tree. The map aT is defined as the

composite

aT : �|�S|� −→ (�|�S|�)/(�|�S|�)−(�|�S|�)T
∼= w(T)/∂w(T)

∼= S|S|−1

The map bT : S|S| −→ (S1)∧S sends the kth coordinate in S|S| to the coordinate in (S1)∧S

which corresponds to the label sk ∈ S of the kth leaf from the left in T.

Definition 4.22. — The signature sgn(T) of a binary planar tree T is sgn(T) = 1 if

T has no internal nodes. If T is obtained by first identifying the roots of a left subtree TL and

a right subtree TR and then adding a new minimal element r, the root, then we set sgn(T) =
(−1)(# internal nodes of TL)·(# leaves of TR) · sgn(TL) · sgn(TR).

Alternatively, sgn(T) is the sign of the shuffle permutation of the non-root nodes of
T required to transform the standard ordering into the ordering which first lists all leaves
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and then lists all internal nodes, where these two sets are internally still ordered as in the
standard order.

Every multilinear monomial w in letters {cs}s∈S canonically gives rise to a binary
planar S-labelled tree Tw: if w = cs is a letter, then Tw has a root and a leaf labelled
by s. If w = [u, v], then Tw is obtained by first identifying the roots of Tu and Tv , then
adding a new minimal element, and finally placing Tu to the left of Tv . We can now
attach homology classes to words:

Definition 4.23. — Given a multilinear monomial w in letters {cs}s∈S, define a map γw in hSp
as the following composite:

S0 sgn(Tw)−−−→ S0� MapSp(S
1,S|S|) ∧ D(S|S|−1)

bTw∧D(aTw )−−−−−−→ MapSp(S
1, (S1)∧S) ∧ D(�|�S|�) = LieS.

We define xw ∈ H̃0(LieS,Z) by pushing forward the fundamental class in H̃0(S0,Z) along γw.

If h ∈ �S and w ∈ LieS is represented by a multilinear monomial, we observe that
γh·w = Lieh ◦ γw.

Proposition 4.24. — If wd ∈ Lied and v1 ∈ LieS1, . . . , vd ∈ LieSd
are represented by mul-

tilinear monomials, then we can form the element wd(v1, . . . , vd) ∈ LieS for S =∐i∈d Si by substi-

tution. The following diagram commutes in hSp:

S0 γw ∧ γv1 ∧ · · · ∧ γvd
> Lied ∧ LieS1 ∧ · · · ∧ LieSd

LieS

μ∨γw(v1,...,vd ) >

Proof. — We will first explain the following two squares:

�|�S|� > �|�d|� ∧ �|�S1 |� ∧ · · · ∧ �|�Sd
|�

S|S|−1

aTw(v1,...,vd )∨
> S|d|−1 ∧ S|S1|−1 ∧ · · · ∧ S|Sd |−1

aTw
∧ aTv1

∧ · · · ∧ aTvd∨

S|S1| ∧ · · · ∧ S|Sd | > S|S|

(S1)∧S1 ∧ · · · ∧ (S1)∧Sd

bTv1
∧ · · · ∧ bTvd∨

> (S1)∧S

bTw(v1,...,vd )∨

We begin with the left square. Its top horizontal map is given by tree ungrafting (cf.
Definition 4.20). The lower horizontal map is induced by the shuffle permutation of the
internal nodes of Tw(v1,...,vd ) which changes the standard order to the order that firsts lists
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the |d|−1 internal nodes of Tw ⊂ Tw(v1,...,vd ) (in standard order), then the |S1|−1 internal
nodes of Tv1 ⊂ Tw(v1,...,vd ) (in standard order), and so on. Since ungrafting preserves the
ratios appearing in the definition of the maps aT above, the left square commutes

We move on to the right square above. Its lower map is canonical. The top hori-
zontal map rearranges the various S|Si |’s so that the corresponding trees Tvi

appear from
left to right in Tw(v1,...,vd ). Applying D(−) to the first square and S−1 ∧ (−) to the second,
smashing both, and rearranging the terms gives a commutative square

MapSp(S
1,S|d|) ∧ S1−|d| ∧ MapSp(S

1,S|S1 |) ∧ S1−|S1 | ∧ . . . > MapSp(S
1,S|S|) ∧ S1−|S|

MapSp(S
1,S∧d) ∧ D(�|�d|�) ∧ MapSp(S

1, (S1)∧S1 ) ∧ D(�|�S1 |�) ∧ . . .

∨
> MapSp(S

1, (S1)∧S) ∧ D(�|�S|�)
∨

The “down-right” path of this diagram is μ ◦ (γw ∧ γv1 ∧ · · · ∧ γvd
) ◦

(sgn(Tw) sgn(Tv1) . . . sgn(Tvd
)).

Assume now that the letters c1, . . . , cd appear in the order cσ(1), . . . , cσ(d) in the
word w. The top path S0 → S0 of this diagram is then homotopy equivalent to the map

S−1 ∧ S1−|d| ∧ (S|Sσ(1)| ∧ S1−|Sσ(1)|) ∧ · · · ∧ (S|Sσ(d)| ∧ S1−|Sσ(d)|)

−→ S−1 ∧ S|S| ∧ S1−|S|

which shuffles negative spheres other than the leftmost S−1 to the right (while preserving
their internal order). The sign of this map is equal to the sign of a corresponding per-
mutation τ of the nodes of Tw(v1,...,vd ): internal nodes corresponds to a copies of S−1 and
leaves correspond to copies of S1.

We can now observe that sgn(Tw) sgn(Tv1) . . . sgn(Tvd
) sgn(τ ) = sgn(Tw(v1,...,vn))

since both are equal to the sign of the permutation of the non-root nodes of Tw(v1,...,vn)

which moves all leaves to the left while preserving the internal standard order of leaves
and internal nodes. �

Corollary 4.25. — If v1, v2, v3 are monomials in pairwise disjoint sets of letters S1,S2,S3,

then

γ[v1,v2] = −γ[v2,v1] and γ[v1,[v2,v3]] + γ[v2,[v3,v1]] + γ[v3,[v1,v2]] = 0 .

Proof. — For the first claim, we use Proposition 4.24 for w = [c1, c2] and w =
[c2, c1] to see that γ[v1,v2] and γ[v2,v1] agree up to precomposition by the map Lie2 → Lie2

induced by the nontrivial permutation in �2. This map is homotopic to multiplication by
(−1).

For the second claim, we use Proposition 4.24 for the words w = [c1, [c2, c3]],
w = [c2, [c3, c1]], and w = [c3, [c1, c2]] to observe that it suffices to show that the map

MapSp(S
1,S3) ∧ D(�|�3|) 1+σ+σ 2−−−−→ MapSp(S

1,S3) ∧ D(�|�3|) is zero, where σ denotes
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the action map induced by the cycle (1 2 3) ∈ �3. Since this cycle has even sign, the in-
duced maps 1, σ, σ 2 : S3 → S3 are in fact all homotopic, and it therefore suffices to prove

that D(�|�3|) 1+σ+σ 2−−−−→ D(�|�3|) is null. This fact was proven by the second-named au-
thor and Antolín-Camarena and is written in Proposition 5.2. of [Cam20]. �

Proposition 4.24 and Corollary 4.25 imply that the assignments w �→ γw �→ xw

from Definition 4.23 descend to �n-equivariant homomorphisms Lien → π0(Lie) →
H̃0(Lie,Z) – our later branching rule implies that they are in fact isomorphisms. Us-
ing Proposition 4.24, we deduce:

Corollary 4.26. — The maps w �→ γw �→ xw give isomorphisms of operads Lie ∼=
π0(Lie) ∼= H̃0(Lie,Z).

Hence, the homology and homotopy groups of spectral Lie algebras form graded

Lie algebras, i.e. Z-graded abelian groups g∗ with a bilinear product [−,−] : gi ×
gj → gi+j such that for all homogeneous u, v,w, the graded antisymmetry relation
[u, v] = −(−1)deg(u)deg(v)[v, u] and the graded Jacobi identity (−1)deg(u)deg(w)[u, [v,w]] +
(−1)deg(w)deg(v)[w, [u, v]] + (−1)deg(v)deg(u)[v, [w, u]] = 0 hold true. Equivalently, graded
Lie algebras are algebras over the algebraic Lie operad {LieS} in the category of Z-graded
abelian groups (endowed with the Koszul symmetric monoidal structure).

An easy variation of our arguments establishes the corresponding statements for
the shifted spectral Lie operad (whose nth term is given by D(�|�n|�)) and shifted Lie
algebras.

4.8. Collapse and ungrafting. — Let x be a proper nontrivial partition of the finite set
S given by S =∐Si∈dx

Si , where dx denotes the set of classes of x. We observe evident iso-
morphisms of posets (PS)[0̂,x] ∼=

∏
Si∈dx

PSi
and (PS)[x,1̂] ∼=Pdx

. We consider the following
two maps:

(1) The map νx : �|�S|� → �|(�S)(0̂,x)|� ∧ �|(�S)(x,1̂)|� → �|�dx
|� ∧

(
∧

Si∈dx
�|�Si

|�) uses the collapse map for x (cf. Section 2.10) and the product
map for (�S)(0̂,x) (cf. Proposition 2.9).

(2) The ungrafting map ux : �|�S|� → �|�dx
|� ∧ (

∧
Si∈dx

�|�Si
|�) corresponding

to the bijection φ :∐Si∈dx
Si = S (cf. Definition 4.20).

Proposition 4.27. — There is a homotopy from the collapse map νx to the ungrafting map

ux for x, denoted by Kx : [0,1] × �|�S|� −→ �|�dx
|� ∧ (

∧
Si∈dx

�|�Si
|�). If h ∈ �S, then

Kh·x(t, h · T) = h · Kx(t,T) ∈ �|�dh·x |� ∧ (
∧

h(Si)∈dh·x �|�h(Si)|�) for all t,T. We have used the

natural action map �|�dx
|� ∧ (

∧
Si∈dx

�|�Si
|�) h·−→ �|�dh·x |� ∧ (

∧
h(Si)∈dh·x �|�h(Si)|�).

Proof. — We begin by describing the map νx explicitly. Let T be a weighted S-
labelled tree in �|�S|�.
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Assume that cutting T along edges {(v−
i ≺ vi)}Si∈dx

partitions S as
∐

Si∈dx
Si and

that for m = maxi d(r, v−
i ) and M = mini d(r, vi), we have m < M; this is precisely

what it means for T to lie in the interior of a simplex corresponding to a chain of
partitions [. . . < xi−1 < x < xi+1 < · · · ] containing x.

For each Si ∈ dx, we form an Si-labelled weighted tree Ti by restricting to the cor-
responding component above the “m-line”, adding a root if necessary, and then rescaling
the weights. Form a weighted dx-labelled tree T′ by first restricting to the component be-
low the “M-line”, then adding leaves where necessary, and finally rescaling the weights.
The collapse map νx from Section 2.10 then sends T to (T′, {Ti}Si∈dx

).

If m ≥ M or there do not even exist such edges (v−
i ≺ vi), then νx sends T to the

basepoint.
Let (�|�S|�)x ⊂ �|�S|� be the open subspace of all weighted S-labelled trees for

which cutting along some edges {(v−
i ≺ vi)}Si∈dx

with nonzero weights {ei}Si∈dx
partitions

the set S as S =∐Si∈dx
Si . The ungrafting map ux and the collapse map νx naturally factor

through maps ux, νx : (�|�S|�)/�|�S|�−(�|�S|�)x
−→ �|�dx

|� ∧ (
∧

Si∈dx
�|�Si

|�). We shall
now produce an explicit homotopy from νx to ux (and hence also from νx to ux).

Given an S-labelled weighted tree T ∈ (�|�S|�)x, we again write ei for the length
of the edge (v−

i ≺ vi) and let fi < 1 be the distance from the root r of T to v−
i . We set

a = min
i

(
ei

1 − fi

)

and b = max
i

(
fi
)
. Moreover, we define M1 = a

1+ab−b
and m1 = bM1;

these will be the new heights of the M- and m-lines. Note that M1 ≤ 1.
Given some t ∈ [0,1], we define a new S-labelled weighted tree Hx(t,T) by taking

the tree T and:

• Scaling the weights of edges lying above the node vi by a factor of (1− t)+ t 1−m1
1−fi

.

• Giving the edge (v−
i ≺ vi) below vi the weight ei + t ·

(
m1 − M1fi + ei

fi−m1
1−fi

)
.

• Scaling all edges below some v−
i by a factor of (1 − t) + tM1 ≤ 1.

An easy check shows that summing up the numbers in Hx(t,T) along an increasing path
from the root to any leaf gives 1. To see that we have defined a valid weighting for all t,
we need to show that all weights are nonnegative. This is clear for the first and last case
in the definition of Hx(t,T). For the middle case, it suffices to prove the claim for t = 1.
We observe that 1− ( 1−m1

1−fi
)(1− ei − fi) ≥ M1 (with equality attained for at least one i) and
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that M1 · fi ≤ m1 (with equality attained for at least one i). Hence the weight of (v−
i ≺ vi)

in Hx(1,T) is at least M1 − m1 ≥ 0.
The assignment (t,T) �→ Hx(t,T) is readily checked to be a well-defined and con-

tinuous function [0,1] × (�|�S|�)x → (�|�S|�)x. Define Kx : [0,1] × (�|�S|�)x −→
(
∧

Si∈dx
�|�Si

|�) ∧ �|�dx
|� by postcomposing Hx with (�|�S|�)x ↪→

(�|�S|�)/�|�S|�−(�|�S|�)x

νx−→ (
∧

Si∈dx
�|�Si

|�) ∧ �|�dx
|�.

The function Kx can be continuously extended to a function

Kx : [0,1] × (�|�S|�)/�|�S|�−(�|�S|�)x
−→ (

∧

Si∈dx

�|�Si
|�) ∧ �|�dx

|�.

Indeed, let (tn,Tn) ∈ [0,1] × (�|�S|�)x ⊂ [0,1] × (�|�S|�)/�|�S|�−(�|�S|�)x
be a

sequence such that tn → t and with Tn ∈ (�|�S|�)x converging to the basepoint in
(�|�S|�)/�|�S|�−(�|�S|�)x

. We will show that Kx(t
n,Tn) = νx(Hx(t

n,Tn)) converges to the
basepoint in (

∧
Si∈dx

�|�Si
|�) ∧ �|�dx

|�.
Using notation from above, we let en

i , f n
i , an, bn,mn

1,Mn
1, be the various numbers

attached to Tn.
In Hx(tn,Tn), the distance Mn from the root r to the lowest vertex vi is given by

Mn := min
i

(

(1 − tn)(en
i + f n

i ) + tn(mn
1 + en

i

1 − f n
i

(1 − mn
1))

)

≤ (1 − tn) + tnMn
1

The distance from the root r to the highest v−
i in Hx(tn,Tn) is mn := ((1 − tn) + tnMn

1)b
n.

After possibly decomposing the sequence into subsequences, we may assume with-
out restriction that one of the following cases holds true:

(1) mn ≥ Mn for all n.
(2) mn < Mn for all n and the sequence f n

i tends to 1 for some i.
(3) mn < Mn for all n, there is a κ > 0 with f n

j < 1 − κ for all n, j, and en
i −→ 0 for

some i.
(4) mn < Mn for all n, there is a κ > 0 with f n

j < 1 − κ and κ < en
j for all n, j, and

the length rn of the root edge of Tn tends to zero.
(5) mn < Mn for all n, there is a κ > 0 with f n

j < 1 − κ and κ < en
j for all n, j, and

the length of the leaf edge of Tn labelled by s ∈ Si tends to zero.

We write Kx(t
n,Tn) = (Tn′, {Tn

i }Si∈dx
).

For case (1), we observe that the tree Kx(t
n,Tn) is constantly equal to the basepoint.

For case (2), we note that the ith leaf-edge of Tn′ has length 1 − ((1−tn)+tnMn
1)f

n
i

Mn ≥
1 − f n

i −→ 0
For case (3), we check that the length of the root edge of the ith tree Tn

i is bounded
above by en

i

1−mn . This number converges to 0 since en
i −→ 0 and 1 − mn ≥ 1 − bn > κ .
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For case (4), we compute Mn > κ . The length of the root edge of Tn′ thus tends to
zero.

For case (5), we use again that 1 − mn ≥ κ to see that the length of the leaf edge in
Tn

i labelled by s tends to zero. This concludes the proof of the existence of the continuous
extension Kx.

Define Kx as [0,1] × �|�S|� → [0,1] × (�|�S|�)/�|�S|�−(�|�S|�)x

Kx−→
(
∧

Si∈dx
�|�Si

|�) ∧ �|�dx
|�.

We clearly have Kx(0,T) = νx(0,T) for all T. To compute Kx(1,T) = ux(T), we
note that for T a weighted S-labelled tree in (�|�S|�)x, our above observations show
that all nodes vi (in the above notation) lie above the “M1-line” in Hx(1,T) (with at least
one on this line). Similarly, all nodes v−

i lie below the “m1-line” (with at least one having
distance m1 from the root). We can then read off the identification Kx(1,T) = ux(T) from
our explicit description of νx in the beginning of this proof. Finally, the equivariance claim
is evident by the symmetry of the definition of Hx. �

4.9. Binary chains. — Let S be a finite set. We will analyse collapse maps for the
following chains:

Definition 4.28. — An increasing chain of partitions σ = [x1 ≤ · · · ≤ xr] of S is binary if for

all i, each equivalence class in xi is the union of at most two equivalence classes in xi−1. For i = 0, this

means that each component of x1 has at most two elements. However, note that we do not require xr to

have only two equivalence classes.

Binary chains of length one. — We begin our analysis with the following observation:

Proposition 4.29. — Let [x ≤ y] be a binary chain. Write N[x,y] for the set of classes of y which

are obtained by merging two classes of x. There is an isomorphism of posets (�S)(x,y)
∼= BN[x,y] between

the interval (x, y) in �S and the poset of proper nonempty subsets of N[x,y].

By Example 2.5, there is a homeomorphism |(�S)(x,y)| ∼= SN[x,y]−2 to the doubly
desuspended standard representation sphere of �N[x,y] . Conventions for |N[x,y]| = 0,1 are
as in Remark 1.2.

We can describe the induced homeomorphism �|(�S)(x,y)|� ∼=−→ �|BN[x,y] |�
∼=−→ SN[x,y]

by sending an S-labelled weighted tree T in �|(�S)(x,y)|� to the point in SN[x,y] =
IN[x,y]/

∂IN[x,y] whose coordinate at n ∈ N[x,y] is the distance from the root to the maximal
node lying under all elements of n.

Binary chains ending in 1̂. — Let σ = [0̂ = x0 ≤ · · · ≤ xr = 1̂] be a binary chain of
partitions starting in 0̂ and ending in 1̂. Moreover, assume that we are given a planar
structure on the S-labelled rooted tree Tσ associated with this chain (cf. Section 4.6).
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Consider the map

ασ : �|�S|� −→ �|(�S)(x0,x1)|� ∧ · · · ∧ �|(�S)(xr−1,xr)|�
∼= SN[x0,x1] ∧ · · · ∧ SN[xr−1,xr ] ∼= S|S|−1,

which is obtained by composing the collapse map �|�S|� → �2(|St(σ )|/|St(σ )−σ |) ex-
plained in Section 2.10 with the homeomorphism SN[x0,x1] ∧ · · ·∧SN[xr−1,xr ] ∼= S|S|−1 defined
by sending the coordinate corresponding to the ith internal node in standard order (on
the set ∪r

i=1N[xi−1,xi] of internal nodes of T, cf. Section 4.7) to the ith coordinate on the
right. We can link ασ to the map aTσ

which we have associated with the binary planar
tree Tσ in Definition 4.21:

Proposition 4.30. — There is a homotopy Lσ : [0,1] × �|�S|� → S|S|−1 from ασ to aTσ
.

If h ∈ �S, then Lh·σ (t, h · T) = Lσ (t,T) for all t,T. Here Th·σ inherits a planar structure from Tσ .

Proof. — We proceed by induction on r, the statement being trivial for r = 0,1.
For r ≥ 2, we assume that the tree Tσ is constructed by first identifying the roots of a left
subtree Tσ1 and a right subtree Tσ2 and then adding an additional minimal element r,
the root. For i = 1,2, let Si be the set of labels of Tσi

. Write σi = [xi
0 ≤ xi

1 ≤ · · · ≤ xi
r] for

the binary chain of partitions of Si obtained by restricting the partitions of σ to Si . We
consider the following two composite maps:

�|�S|�
νxr−−−−⇒
uxr

�|�2|� ∧
( 2∧

i=1

�|�Si
|�
)

id∧ασ1∧ασ2−−−−−−−−−−−−−−−−−−⇒
id∧aTσ1

∧aTσ2

�|�2|� ∧
( 2∧

i=1

S|Si |−1

)

.

Here ασi
is the collapse map associated with the chain σi , the map aTσi

is defined in terms
of the Si-labelled binary planar tree Tσi

(cf. Definition 4.21), the symbol νxr
denotes the

collapse map for the partition xr , and the map uxr
is the ungrafting map with respect to xr

(cf. Section 4.8).
Using our explicit description of collapse maps in Section 2.10, we see that the top

composition agrees with ασ . The bottom composition evidently gives the map aTσ
. By

Proposition 4.27, there is a homotopy Kxr
from νxr

to uxr
. By induction hypothesis, there

are homotopies Lσi
from ασi

to aTσi
. Setting Lσ := (id∧Lσ1 ∧ Lσ2) ◦ Kxr

gives the desired
homotopy. �

General binary chains. — To analyse the collapse map associated with general binary
chains, let σ = [0̂ = x0 ≤ x1 ≤ · · · ≤ xr] be a binary chain of proper nontrivial partitions
of S such that xr partitions S as S =∐Si∈dxr

Si , where dxr
is the set of classes of xr . Write
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xi
j for the partition obtained by restricting xj to the set Si . Suppose that for each i, we

have chosen a planar structure on the Si-labelled binary tree Tσi
associated with the

binary chain σi = [0̂i ≤ xi
1 ≤ · · · ≤ xi

r ≤ 1̂i], where 0̂i and 1̂i denote the minimal and
maximal partition on Si . Write ασi

: �|�Si
|� → S|Si |−1 for the corresponding collapse

map described above Proposition 4.30.

Observe that �|�S|� νxr−→ �|�dxr
|� ∧ (

∧
Si∈dxr

�|�Si
|�) id∧(

∧
i ασi

)−−−−−−→ �|�dxr
|� ∧

(
∧

Si∈dxr
S|Si |−1) factors through �|�S|� → �|(�S)(0̂,x0)

|� ∧ · · · ∧ �|(�S)(xr ,1̂)|� �
(
∧

Si∈dxr
S|Si |−1) ∧ �|�dxr

|�, where the first map is the collapse map associated with the
chain [x0 < · · · < xr]. Combining the two homotopies from Proposition 4.27 and Propo-
sition 4.30, we deduce:

Proposition 4.31 (Collapse and ungrafting). — There is a homotopy

Mσ : [0,1] × �|�S|� −→ �|�dxr
|� ∧ (

∧

Si∈dxr

S|Si |−1)

from Mσ (0,−) = (id∧(
∧

i ασi
)) ◦ νxr

(defined in terms of collapses) to Mσ (1,−) = (id∧aTσi
) ◦

uxr
(defined using ungrafting of trees).

If h ∈ �S, then Mh·σ (t, h·T) = h·Mσ (t,T) ∈ �|�dh·xr
|� ∧ (

∧
h(Si)∈dh·xr

S|h(Si)|−1) for all

t,T. Here we have used the map �|�dx
|� ∧ (

∧
Si∈dx

S|Si |−1)
h·−→ �|�dh·x |� ∧ (

∧
h(Si)∈dh·x S|h(Si)|−1)

and have given the binary trees associated with h ·σ the planar structures induced by the planar trees Tσi
.

In the unsuspended case, the collapse map takes the form

|�S|−→|(�S)(0̂,x1)
|�∧�|(�S)(x1,x2)|�∧ · · ·∧�|(�S)(xr−1,xr)|�∧|(�S)(xr ,1̂)|�

∼= �−1(
∧

Si∈dxr

S|Si |−1) ∧ |�dxr
|�.

Here �−1
∧

Si∈dxr
�|�Si

|� denotes a desuspension of the sphere
∧

Si∈dxr
S|Si |−1. The un-

suspended collapse map interacts with the group action in the expected manner.

5. Restrictions

We will now use the full strength of complementary collapse against orthogonality
fans to compute Young restrictions of the partition complex and parabolic restrictions of
Bruhat-Tits buildings.

5.1. Young restrictions of the partition complex. — Let PS be the lattice of partitions of
the finite set S, ordered under refinement, so that �S = PS = PS − {0̂, 1̂}. Fix a map
g : S → k and write Ci = g−1(i). Let �g = �C1 × · · · × �Ck

be the associated Young
subgroup.
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An orthogonality fan on the partition complex. — Given a chain of partitions σ = [y0 <

· · · < ym] ∈FPS and a class K of ym, we attach a word wK = wK(σ ) ∈ F〈c1, . . . , ck〉 in the
free group on k generators to K:

• If m = 0, we attach the word c
|K∩C1|
1 . . . c

|K∩Ck |
k to K.

• If m > 0, we first use the chain [y0 < · · · < ym−1] to attach a word to all classes
in ym−1. We then let wK be the product of all words attached to ym−1-classes
which are contained in K, multiplied in ascending lexicographical order (where
c1 < · · · < ck ).

Example 5.1. — For S = {1, . . . ,6}, k = 3, and C1 = {1,2}, C2 = {3,4,5}, C3 =
{6}, we send the chain [{1|23|4|5|6} < {1|23|45|6} < {123|456}] to the words c2

1c2, c2
2c3.

For σ = [y0 < · · · < ym] a chain, we record the words attached to ym-classes in
ascending lexicographic order as wa < wb1 < · · · < wbs

, where possibly s = 0. Let A be
the set of ym-classes whose associated word is the minimal wa. Define B1, . . . ,Bs in a
similar manner and set B = ∪iBi .

Let F1(σ ) = F1(S, g)(σ ) be the partition obtained from ym by merging classes in B.
Let F2(σ ) = F2(S, g)(σ ) be the partition obtained from ym by merging classes in A.

We sketch σ,F1(σ ), and F2(σ ). The bullets represent classes of ym

Theorem 5.2. — The pair F(S, g) = (F1(S, g),F2(S, g)) is an orthogonality fan on the

�g -lattice PS.

Proof. — By Lemma 3.17, it suffices to check that F1 and F2 are orthogonality functions

in the sense of Definition 3.16. The functions F1, F2 are clearly increasing and equivari-
ant.

To check axiom (3), let σ = [y0 < · · · < ym] be a chain of partitions in PS and let
z > ym. Define the sets of ym-classes A and B1, . . . ,Bs as above. Let A′ ⊂ A be the collection
of ym-classes which are merged with a class in B = ∪Bi in z. Similarly, write B′ ⊂ ∪Bi for
the family of classes in B which are merged with a class in A in the partition z. For F1, we
observe a natural injection

{ym < y < z | y ∧ F1(σ ) = ym, (y ∨ F1(σ )) ∧ z = z}
↪→ {A′ f−→ B′ | ∀a ∈ A′ : a �z f (a)}
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obtained by sending a ∈ A′ to the unique f (a) ∈ B′ with a �y f (a). We draw a suggestive
example on the right. The subposet is therefore discrete and F1 an orthogonality function.
The statement for F2 follows from a parallel argument. �

Orthogonal chains from labelled Lyndon words. — We will now give a convenient descrip-
tion of the chains of partitions which are orthogonal to the fan F(S, g) from Theorem 5.2.
Let k∗ be the set of words of finite length in {1, . . . , k}, ordered lexicographically, and
consider the free group F〈cα〉α∈k∗ . This free group inherits a lexicographic order based
on the order on k∗. A word w ∈ F〈cα〉α∈k∗ is called a weak Lyndon word if w ≤ w̃ for any
cyclic rotation w̃ of w.

Definition 5.3. — The reduction function (−)′ : F〈cα〉α∈k∗ → F〈cα〉α∈k∗ takes a word

w = cα1 . . . cαm
and replaces a string cαi

cαi+1 by cαiαi+1 whenever αi is minimal in {α1, . . . ,αm}
and αi+1 > αi .

Given w ∈ F〈cα〉, we define a sequence w0,w1,w2 . . . by w0 = w′ and wi = w′
i−1

for i > 0.

Example 5.4. — For k = 3 and w = c1c1c2c1c1c3c2c3, we have:

w0 = c1c12c1c13c2c3, w1 = c112c113c2c3, w2 = c112113c2c3,

w3 = c1121132c3, w4 = c11211323

Proposition 5.5. — The reduction function (−)′ preserves weak Lyndon words in F〈cα〉.

Proof. — Given a weak Lyndon word w = cα1 . . . cαm
, any rotation w̃′ of w′ lifts to

a rotation w̃ of w satisfying (w̃)′ = w̃′ (since w is weak Lyndon). Observe that if w̃′ < w′,
then w̃ < w. �

Lemma 5.6. — If w = ud is a weak Lyndon word for which u is not a letter, then w′ �= w.

Proof. — If w = cα1 . . . cαm
, then α1 is minimal in {α1, . . .αk}. Hence either w =

cd
α1

or w′ �= w. �

Corollary 5.7. — If w is weak Lyndon, then w0,w1 . . . stabilises in a word of the form ci
α.
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We use this construction to produce chains of partitions. First, we mildly extend
terminology from Section 4.2. Fix a finite set S and a map g : S → k∗. An (S, g)-
labelling of a weak Lyndon word w = ud in letters {cα}α∈k∗ is a bijection between S and
the letters of w such that each s ∈ S labels a symbol cg(s). Two bijections give the same
labelling if they agree after permuting the copies of u.

Let w be a weak Lyndon word in letters {cα}α∈k∗ together with an (S, g)-label f .
For each i, we have a canonical function from S to the letters of wi .

Let xi be the partition on S which identifies two points if they have the same image
under this function. Let Sxi

= S/xi be the set of classes of xi and gxi
: Sxi

→ k∗ be the
natural function recording the “type” α of the letter cα in wi corresponding to a given
class in Sxi

. Then wi is naturally (Sxi
, gxi

)-labelled, and xi,Sxi
, and gxi

are well-defined for
all i.

The illustration shows the chain of partitions attached to w = c1c1c2c1c1c3c2c3 (cf.
Example 5.4).

Definition 5.8. — The binary chain of partitions σw attached to a labelled weak Lyndon word

w is given by σw = [x0 < x1 < · · · < xr], where r is chosen maximal with xr �= 1̂.

Let now g : S → k be a map with fibres Ci = g−1(i) of size ni. Using Definition 4.7,
we prove:

Lemma 5.9. — The rule w �→ σw induces a �C1 × · · · × �Ck
-equivariant bijection

Bw
(S,g)(n1, . . . , nk)

∼=−→ F⊥(S, g).

Proof. — We freely use notation from above. Equivariance is evident. For bijectiv-
ity, we induct on n = n1 + · · · + nk . Assume without restriction that n1 > 0. If n = n1, then
the map identifies the unique weak Lyndon word cn

1 with the unique (empty) orthogonal
chain.

If n > n1, we can remove all occurrences of c1 by iterated application of the
reduction function (−)′. Indeed, fix w ∈ Bw

(S,g)(n1, . . . , nk). We will show that the chain
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σw associated with w is F(S, g)-orthogonal in the sense of Definition 3.9. Pick m

minimal such that wm does not contain c1. We have a “type function” gxm
: Sxm

→
{. . . ,122, . . . ,12k,12, . . . ,1k,2, . . . , k} with finite linearly ordered image, and the word

wm is an (Sxm
, gxm

)-labelled weak Lyndon word in letters {. . . , c122, . . . , c12k, c12, . . . , c1k,

c2, . . . , ck} by Proposition 5.5. Note that xm ⊥ F1([0̂]) and (σw)<xm = [x0 < · · · < xm−1] ⊥
F≤xm

2 , using that F1([0̂]) is the partition identifying all elements labelled by 2,3, . . ., while
F2([0̂]) is the partition identifying all elements labelled by 1. Observe that (σw)>xm is

(F≥xm

1 ,F≥xm

2 )-orthogonal precisely if σwm
is an F(Sxm

, gxm
)-orthogonal chain in the poset of

partitions on Sxm
. This holds by induction as wm is shorter than w. Hence σw is F(S, g)-

orthogonal.

After having shown that the map Bw
(S,g)(n1, . . . , nk) −→ F⊥(S, g) is well-defined, we

will now prove bijectivity. Sending w to (xm, [x0 < · · · < xm−1],wm) gives a �C1 × · · · ×
�Ck

-equivariant map

D : Bw
(S,g)(n1, . . . , nk)

−→
∐

y⊥F1([0̂])
[z0<···<zm−1]⊥F≤y

2

Bw
(Sy,gy)

(. . . , n122, . . . , n12k, n12, . . . , n1k, n2, . . . , nk)

In order to prove that the map D is bijective, we produce an inverse E. Given y ⊥ F1([0̂]),
a chain [z0 < · · · < zm−1] ⊥ F≤y

2 , and a word w ∈ Bw
(Sy,gy)

(. . . , n122, . . . , n12k, n12, . . . , n1k,

n2, . . . , nk), we first produce a word w by replacing all letters of the form c1ai by the string

ca
1ci and observe that w is again a weak Lyndon word. We define an (S, g)-labelling of w:

if s ∈ S maps to [s] ∈ Sy with gy([s]) = 1ia, then we can pick a unique t ∈ [s] with g(t) = a.

We then declare that s labels the (r + 2)nd letter from the right in the corresponding

string c1c1 . . . c1ca in w if r is the minimal index with s ∼ t in the partition zr (using the

convention z−1 = 0̂). We have defined the inverse E.

A parallel construction can be carried out on chains of partitions: given any

partition y ⊥ F1([0̂]) of S, we write Sy for the collection of equivalence classes of y

and obtain a “type function” gy : Sy → {. . . ,122, . . . ,12k,12, . . . ,1k,2, . . . , k} from g.

By Definition 3.9 of orthogonality, we obtain a �C1 × · · · × �Ck
-equivariant bijection

F(S, g)⊥
∼=−→∐

y⊥F1([0̂])
[z0<···<zm−1]⊥F≤y

2

F(Sy, gy)
⊥.
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Combining the two bijections for words and chains, we obtain the following com-
mutative square whose lower horizontal map is bijective by induction:

Bw
(S,g)(n1, . . . , nk) > F(S, g)⊥

∐

y⊥F1([0̂])
[z0<···<zm−1]⊥F≤y

2

Bw
(Sy,gy)

(. . . , n122, . . . , n12k, n12, . . . , n1k, n2, . . . , nk)

∼=∨ ∼=
>

∐

y⊥F1([0̂])
[z0<···<zm−1]⊥F≤y

2

F(Sy, gy)
⊥

∼=∨

�

Topological branching rule. — Fix a decomposition n = n1 + · · · + nk . Let S = n and
g : n → k be the unique order-preserving function with |g−1(i)| = ni. Given any (n, g)-
labelled weak Lyndon word w = ud ∈ Bw

n (n1, . . . , nk), we have attached a binary chain of
partitions σw = [x0 < · · · < xr] ∈ F⊥(n, g) in Definition 5.8. The copies of u partition n
into d sets via the labelling; we write dw for the set of classes of this partition. Observe
that for each Si ∈ dw, the Si-labelled tree associated with the (Si, g|Si

)-labelled Lyndon
word u carries a planar structure. Using our analysis in Section 4.30, we can describe the
collapse map associated with σw as

|�n| −→ |(�n)(0̂,x0)
|� ∧�|(�n)(x0,x1)|� ∧ . . .�|(�n)(xr−1,xr)|� ∧ |(�n)(xr ,1̂)|�

�−→ �−1(S
n
d −1)∧dw ∧|�dw

|�

Combining this observation with Complementary Collapse in Theorem 3.14, our
Lemma 5.9 concerning weak Lyndon words and orthogonal chains, and Remark 4.9, we
obtain:

Theorem 5.10. — For n = n1 + · · · + nk, there are simple �n1 × · · · × �nk
-equivariant

equivalences

|�n| �−−→
∨

w∈Bw
n (n1,...,nk)

�−1(S
n
d −1)∧dw ∧ |�dw

|�

�−−→
∨

d | gcd(n1,...,nk)

B(
n1
d ,...,

nk
d )

Ind
�n1×···×�nk

�d
(�−1(S

n
d −1)∧d ∧ |�d |�)

5.2. Branching and ungrafting. — Theorem 5.10 has consequences for spectral Lie
algebras. Fix a decomposition n = n1 + · · · + nk and let g : n → k be the increasing
function with |g−1(i)| = ni. Let w = ud ∈ Bw

n (n1, . . . , nk) be a weak Lyndon word with
labelling represented by f . The various copies of u give rise to a partition xw, written as
n =∐Si∈dw

Si . For each Si ∈ dw, the Lyndon word u has an (Si, g|Si
)-labelling represented
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by the restriction fi of f to Si . We write Ti,w for the Si-labelled binary planar tree Tũfi

corresponding to the Lie monomial ũfi obtained by resolving u. An n-labelled weighted
tree is said to be grafted from w if it has nonzero weights on all edges and we can find
edges {(v−

i < vi)}Si∈dw
such that for each Si , the component of T above v−

i is isomorphic
to the Si-labelled tree Ti,w. We write (�|�n|�)(xw,Ti,w) for the open subspace of �|�n|�
consisting of all points which can be represented by trees grafted from w.

Proposition 5.11. — Every point in �|�n|� can lie in at most one subspace (�|�n|�)(xw,Ti,w).

Proof. — Suppose a point in (�|�n|�)(xw,Ti,w) is represented by the tree T having
nonzero weights on all edges. We attach a weak Lyndon word in letters c1, . . . , ck to the
nodes of T as follows. First, we assign the letter cg(s) to each leaf labelled by s ∈ n. Then, we
label all non-leaves recursively: if the node t has incoming nodes t1, . . . , tk , we multiply the
words attached to t1, . . . , tk in lexicographically increasing order and attach this product
to t. The nodes vi are then characterised by the property that for all nodes above them,
the attached words are strict Lyndon words, whereas for all nodes strictly below them,
they are only weak Lyndon words. The word u is the label of any vi , and hence w = ud is
determined. �

We obtain a continuous �n1 × · · · × �nk
-equivariant map

�|�n|� −−−−→
∨

w∈Bw
n (n1,...,nk)

�|�n|�/�|�n|�−(�|�n|�)(xw,Ti,w)
.

For each w, the homotopy Mσw
: [0,1] × �|�n|� → �|�dxk

|� ∧ (
∧

Si∈dxk
S|Si |−1) from

Proposition 4.31 sends [0,1] × (�|�n|� − (�|�n|�)(xw,Ti,w)

)
to the basepoint. Together

with its established equivariance properties, this implies the existence of a �n1 ×· · ·×�nk
-

equivariant homotopy

M : [0,1] × �|�n|� −−−−→
∨

w∈Bw
n (n1,...,nk)

�|�dw
|� ∧ (S

n
d −1)∧dw

whose composition with the projection to �|�dw
|� ∧ (S

n
d −1)∧dw is Mσw

for all w ∈
Bw

n (n1, . . . , nk). The map M(0,−) appears in Theorem 5.10 and is an equivariant equiv-
alence. We deduce:

Corollary 5.12. — There is a �n1 × · · · × �nk
-equivariant homotopy equivalence

M(1,−) : �|�n|� �−−−−−→
∨

w∈Bw
n (n1,...,nk)

�|�dw
|� ∧ (S

n
d −1)∧dw

such that composing with the projection to the summand corresponding to w gives (id∧∧ aTi,w
) ◦ uxw

.
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We can now deduce the algebraic branching rule by applying homology:

Proof of Lemma 4.14. — Let w = ud ∈ Bw
n (n1, . . . , nk). Write xw for the partition

n =∐Si∈dw
Si induced by the various copies of u in w via the labelling. For each Si ∈ dw,

let fi be the (Si, g|Si
)-labelling on u obtained by restriction and write Ti,w = Tũfi . By

Corollary 4.26, we can obtain the map θw appearing in the algebraic branching rule by

applying H̃0(−,Z) to the composite ϑw given by Liedw

id∧∧γ
ũfi−−−−→ Liedw

∧∧Si∈dw
LieSi

−→
Lien. After pre- and postcomposing with suitable equivalences, the map

⊕
ϑw is read-

ily obtained by applying MapSp(S
1, (S1)∧n) ∧ D(−) to the equivalence �|�n|� �−→

∨
w∈Bw

n (n1,...,nk)
�|�dw

|� ∧ (S
n
d
−1)∧dw in Corollary 5.12. �

5.3. Free Lie algebras on multiple generators. — We will now describe free Lie algebras
on direct sums of spectra X1, . . . ,Xk in terms of free Lie algebras on individual spectra.

Assume that we are given a strict Lyndon word w ∈ B(|w|1, . . . , |w|k) of length
|w| =∑i |w|i . Let S = {1, . . . , |w|} and write g : S → k for the unique order-preserving
function with |g−1(i)| = |w|i . We give w the (S, g)-label f which labels all copies of ci by
elements in g−1(i) in increasing order from left to right. Write w̃ = w̃f ∈ Lie|w| for the Lie
monomial obtained by resolving w.

In Section 4.7, we have constructed a map γw̃ : S0 → Lie|w| in the homotopy cat-
egory of spectra. Since Lie|w| is nonequivariantly equivalent to a wedge of 0-spheres, we
can pick a morphism γw̃ : Sc → Lie|w| in Sp from a connected space of representatives
for γw̃. Here Sc is a cofibrant replacement of the unit. Inducing up, we obtain a map
Ind

�|w|1×···×�|w|k
1 Sc → Lie|w| in the category Fun(B(�|w|1 × · · · × �|w|k),Sp).

Given cofibrant X1, . . . ,Xk ∈ Sp, we apply (−∧(X∧|w|1
1 ∧· · ·∧X∧|w|k

k ))�|w|1×···×�|w|k
and obtain

Sc ∧ X∧|w|1
1 ∧ · · · ∧ X∧|w|k

k → Lie|w| ∧
�|w|1×···×�|w|k

(X∧|w|1
1 ∧ · · · ∧ X∧|w|k

k )

→ Lie|w| ∧
�|w|

(X1 ∨ · · · ∨ Xk)
∧|w|

The final spectrum includes into
⊕

n Lien ∧�n
(X1 ∨ · · · ∨ Xk)

∧n. Passing to underlying
∞-categories gives a morphism Fw : X∧|w|1

1 ∧· · ·∧X∧|w|k
k → FreeLie(X1 ∨· · ·∨Xk) in Sp.

By Corollary 4.26 and a straightforward diagram chase, the effect of Fw on homotopy is
as explained before the statement of the following Corollary in Section 1:

Corollary 5.13. — Inducing up the maps Fw and summing over all Lyndon words gives an

equivalence of spectra

∨

w∈Bk

Fw :
∨

w∈Bk

FreeLie(X
∧|w|1
1 ∧ · · · ∧ X∧|w|k

k )
�−→ FreeLie(X1 ∨ · · · ∨ Xk).
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Proof. — It suffices to prove that for each (n1, . . . , nk) with n =∑i ni , the compo-
nent of

∨
w∈Bk

Fw of multi-degree (n1, . . . , nd) is an equivalence. In Sp, we can obtain this
component by applying (− ∧ X∧n1

1 ∧ · · · ∧ X∧nk

k )�n1×···×�nk
to the following map of spectra

with �n1 × · · · × �nk
-action:
∨

d | n

w∈Bk(
n1
d ,...,

nk
d )

Ind
�n1×···×�nk

�d
(Lied ∧ (Sc)

∧d)

id∧γ∧d
w̃−−−→
∨

d | n

w∈Bk(
n1
d ,...,

nk
d )

Ind
�n1×···×�nk

�d

(
Lied ∧ Lie∧d

|w|
)−→ Lien

Lemma 9.20. of [AC11] implies that Ind
�n1×···×�nk

�d
(Lied ∧ (Sc)

∧d) ∧ X∧n1
1 ∧

· · · ∧ X∧nk

k and Lien ∧ X∧n1
1 ∧ · · · ∧ X∧nk

k are both �n1 × · · · × �nk
-cofibrant. It is

therefore sufficient to prove that applying (− ∧ X∧n1
1 ∧ · · · ∧ X∧nk

k )h(�n1×···×�nk
) to the

above map gives an equivalence. For this, it is in turn enough to check that the
above equivariant map is a weak equivalence of underlying spectra, i.e. an isomor-
phism in the homotopy category. Here, this map can be obtained, after precom-
posing with an equivalence, by applying MapSp(S

1, (S1)∧n) ∧ D(−) to the equiva-

lence �|�n|� −→∨
d | n

w∈Bk(
n1
d

,...,
nk
d

)

Ind
�n1×···×�nk

�d

(
�|�d|� ∧ (S|w|−1)∧d

)
established in Corol-

lary 5.12. By Proposition 2.29, this implies the result. �

Remark 5.14. — The same strategy can be used to construct an equivalence
∨

w∈Bk
Gw : ∨w∈Bk

Free�Lie(S1−|w| ∧ X∧|w|1
1 ∧ · · · ∧ X∧|w|k

k )
�−→ Free�Lie(X1 ∨ · · · ∨ Xk)

for the shifted Lie operad whose nth term is given by D(�|�n|�). Here, Gw is the free
map induced by the map of spectra Gw, which is defined by replacing γw̃ by D(aTw̃

) in
the definition of Fw. The effect of Gw on homotopy is given by the shifted variant of the
rule described in Section 1 (before the statement of Corollary 5.13).

5.4. Symmetry breaking. — Complementary collapse also gives an asymmetric ver-
sion of Theorem 5.10. Fix a partition S = A ∪ B1 ∪ · · · ∪ Bk corresponding to g : S →
{1, . . . , k + 1}. Write x for the partition which identifies all points in B = ∪iBi . Set
F′

1([0̂]) = x and F′
1(σ ) = 1̂ else. Let F′

2 = F2(S, g) be chosen as in Section 5.1 for the
orbits ordered as A < B1 < · · · < Bk . Theorem 5.2 shows that F′ = (F′

1,F′
2) is an orthog-

onality fan, and we deduce:

Theorem 5.15 (Symmetry breaking). — There is a simple (�A × �B1 × . . . )-equivariant

equivalence

|�n| −→
∨

A=A1
∐···∐A�, Ai �=∅
fi :Ai↪→B

s.t. im(fi+1)⊂im(fi)

�−1S|A1| ∧ · · · ∧ S|A�| ∧ |�B|�
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Proof. — Choosing a chain [z1 < · · · < z� < y] orthogonal to F′ amounts to the
following data:

• Choose a function f : A → B corresponding to a partition y = yf ⊥ x.
• Choose a set A1 containing one f -preimage for each point in f (A) ⊂ B. We

obtain a partition z1 = zA1 by identifying each point in A1 with its image under f .
• Choose a set A2 ⊂ A − A1 containing one f -preimage for each point in

f (A − A1). We obtain a partition z2 taking z1 and merging all points in A2 with
their image under f .

Proceeding in this way gives all [z1 < .. < z� < y] ⊥ F′ – the claim follows by
Theorem 3.14. �

Remark 5.16. — Symmetry breaking can also be used to give an inductive proof
of Theorem 5.10. The disadvantage of this approach is that it is hard to describe the
involved collapse maps.

5.5. Parabolic restrictions of Bruhat-Tits buildings. — Let V be a finite-dimensional vec-
tor space over a finite field k. Fix a flag A = [A0 < · · · < Ar] with parabolic subgroup PA.
We define an orthogonality fan (F) of length 1 by F([B0 < · · · < Bi]) = Ar−i ∨ Bi . A flag
[C0 < · · · < Cr] is then (F)-orthogonal if Ci ⊥ Ar−i for i = 0, . . . , r. Choosing a flag B
complementary to A with parabolic PB and intersecting Levi LAB = PA ∩ PB, we read off
from Theorem 3.14:

Lemma 5.17. — There is a simple PA-equivalence

|BT(V)| ∼= IndPA
LAB

(�r

r+1∧

i=0

|BT(gri(B))|�).

Here gri(B) = Bi/Bi−1 for i = 1, . . . , r and we set gr0(B) = B0 and grr+1(B) = V/Br .

Lemma 5.17 gives a new proof of a nontrivial result in modular representation
theory, cf. [Ste57]. Write Stn for the integral Steinberg module, i.e. the GLn(Fp)-module given
by H̃n−2(BT(Fn

p),Z).

Corollary 5.18. — Let k = Fq be a finite field and assume that R is any ring in which the

number
∏n

k=1(q
k − 1) is invertible. Then St⊗R is a projective R[GLn(Fq)]-module.

Proof. — Recall that whenever H ⊂ G are finite groups with |G|
|H| invertible in R,

then an R[G]-module M is projective if and only if its restriction to R[H] is a projective
R[H]-module.

Let PA ⊂ GLn(Fq) be the subgroup of upper triangular invertible matrices stabilis-
ing the flag 〈e1〉, 〈e1, e2〉, . . . and write H ⊂ PA for the subgroup of matrices with all diag-
onal entries equal to 1. Note that the unipotent radical H is also the Sylow p-subgroup,
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where p = char(Fq). Since H intersects the Levi LAB corresponding to any complemen-
tary flag B trivially, Lemma 5.17 and the double coset formula imply that the restriction
of St⊗R to R[H] is a free R[H]-module. The claim follows since |GLn(Fq)|

|H| =∏n

k=1(q
k − 1)

by a well-known counting argument. �

6. Fixed points

Given a subgroup G ⊂ �n, the subspace |�n|G of G-fixed points carries a natural
action of the Weyl group W�n

(G) = N�n
(G)/G. We will now provide an answer to the

following question:

Question. — What is the W�n
(G)-equivariant simple homotopy type of |�n|G?

In order to present our analysis, we single out a special class of subgroups:

Definition 6.1. — A subgroup G ⊂ �n is isotypical if all G-orbits are equivariantly isomorphic.

Our result reduces the general case of the question above to the transitive situation:

Theorem 6.2. — If G ⊂ �n acts isotypically on {1, . . . , n}, we may assume after relabelling

that G is a transitive subgroup of �d

�−→ �
n
d

d ⊂ �n for d | n and � the diagonal embedding.

Then there is a W�n
(G) = N�n

(G)/G-equivariant simple homotopy equivalence

|�n|G �−−→ IndW�n (G)

W�d
(G)×� n

d

(|�d |G)� ∧ |� n
d
|�

We again use the convention that if P is a poset with one element, then |P|�∧X� =
X for any X.

Lemma 6.3. — If G acts non-isotypically, then |�n|G is W�n
(G)-equivariantly collapsible.

Remark 6.4. — We could also view |�n|G as a N�n
(G)-space or a C�d

(G)
n
d -space.

In this case, the above result implies equivalences

|�n|G ∼= IndN�n (G)

N�d
(G)×� n

d

(|�d |G)� ∧ |� n
d
|�,

|�n|G ∼= Ind
C�d

(G)
n
d

C�d
(G) (|�d |G)� ∧ |� n

d
|�

Proof of Theorem 6.2 and Lemma 6.3. — Write x ∈ �n for the partition of {1, . . . , n}
into G-orbits. We assume that G is nontrivial and that the action is not transitive. This
implies that x �= 0̂, 1̂.

Claim. — The group G is isotypical if and only if x⊥ �= ∅.
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Proof of Claim. — Let y ∈ x⊥ be a partition with corresponding equivalence rela-
tion �y on {1, . . . , n}. Given two elements a, b with a �y b, we observe that for each
c ∈ OrbG(a), there is a d ∈ OrbG(b) with c �y d , and that this d must be unique as
x ∧ y = 0̂. We obtain an G-equivariant function OrbG(a) → OrbG(b) which by symmetry
is bijective. Since y ∨ x = 1̂, this implies that all orbits are isomorphic G-sets.

For the converse, assume that the action is isotypical with orbits O1, . . . ,Ok . We
pick G-equivariant isomorphisms fi : Oi → Oi+1 and observe that the finest partition y of
{1, . . . , n} satisfying (a ∈ Oi) �y (fi(a) ∈ Oi+1) for all a and all i satisfies y ⊥ x. �

Claim. — The action of W�n
(G) on x⊥ is transitive.

Proof of Claim. — Given y, z ∈ x⊥, we define σ ∈ �n by setting σ(i) = j if and only
if i, j lie in the same G-orbit and there is an g ∈ G with i �y g(1) and j �z g(1). A simple
argument shows that this gives a permutation σ in C�d

(G)
n
d ⊂ N�n

(G) satisfying σ(i) �z

σ(j) if and only if i �y j, which means that σ · z = y. �

We can now deduce Theorem 6.2 and Lemma 6.3. The lemma follows immedi-
ately from Theorem 3.5 since x⊥ = ∅. In order to prove Theorem 6.2, we take z ∈ x⊥ to
be the G-invariant partition with i �z (i + kd) for all numbers i, k. The transitivity of the
W�n

(G)-action on x⊥, Theorem 3.5, and Proposition 2.22 together imply the existence of
a simple W�n

(G)-equivariant equivalence |�n|G ∼= IndW�n (G)

Stab(z) (|�n,<z|G)� ∧ (|�n,>z|G)�.
The result follows by observing the identifications Stab(z) = W�d

(G) × � n
d

and �G
n,<z

∼=
� n

d
, and �G

n,>z
∼= �G

d . �

It remains to analyse the transitive actions. This case is the subject of a lemma of
Klass [Kla73]:

Lemma 6.5. — If G ⊂ �n is transitive and H is the stabiliser of 1, then the poset of G-

invariant partitions of {1, . . . , n} is isomorphic to the poset of subgroups H ⊆ K ⊆ G. The non-trivial

partitions correspond to subgroups H � K � G.

Proof. — We identify n with the G-set G/H. Let x be a G-invariant partition of
G/H.

Let K = {g ∈ G | g(eH) �x eH}. Then K is a subgroup of G. Indeed, suppose
that we have eH �x g1H �x g2H. Multiplying the first equivalence by g2 we obtain that
g2H �x g2g1H. Since g2H �x eH, it follows that g2g1 ∈ K. This shows that K is closed
under multiplication. A similar argument shows that K is closed under taking inverses.
Clearly, H ⊆ K. It is easy to see that a finer partition will lead to a smaller group K.

Conversely, let K be a group, H ⊆ K ⊆ G. Let x be the partition of G/H defined
by the rule g1H �x g2H if and only if g−1

2 g1 ∈ K. It is easy to check that x is a well defined
G-invariant partition, and that we have defined two maps between posets that are inverse
to each other. �
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We can obtain specific contractibility results for certain subgroups:
Let us suppose that d | n and d factors as a product d = d1 · · · dl of integers

d1, . . . , dl > 1 with l > 1. Consider the iterated wreath product �d1 
 · · · 
 �dl
as a sub-

group of �n via the inclusions

�d1 
 · · · 
 �dl
↪→ �d

�−→ (�d)
n
d ↪→ �n.

Lemma 6.6. — The space |�n|�d1 
···
�dl is collapsible.

Proof. — Without restriction, we may assume by Theorem 6.2 that d = n.
We observe that �d1 
 · · · 
 �dl

= N�d1 
···
�dl
((�d1 
 · · · 
 �dl−1)

dl ). Hence, we have

|�n|�d1 
···
�dl = (|�n|(�d1 
···
�dl−1 )dl
)

N�d1

···
�dl

((�d1 
···
�dl−1 )dl )

By Lemma 6.2, the space |�n|(�d1 
···
�dl−1 )dl is W�d1 
···
�dl
((�d1 
 · · · 
 �dl−1)

dl )-equivariantly
collapsible since the action of (�d1 
 · · · 
 �dl−1)

dl on {1, . . . , n} is not isotypical. �

We can classify the isotropy groups of simplices in |�n| which act isotypically:

Lemma 6.7. — Consider the action of �n1 × · · · × �nk
on �n. Let G ⊂ �n1 × · · · × �nk

be an isotropy group of a simplex in �n. Suppose that G acts isotypically on n. Then G is conjugate to

a group of the form �d1 
 · · · 
 �dl
, where l ≥ 1, and d1 · · · dl|gcd(n1, . . . , nk). As usual, the group

G acts diagonally on blocks of size d1 · · · dl . The possibility that G is the trivial group is included.

Proof. — Let σ = [x0 < · · · < xi] be a chain of partitions of n. Let G be the sta-
biliser of this chain in �n1 × · · · × �nk

⊂ �n. We will analyse the general form of G. The
group G acts on the set of equivalence classes of each xj . Recall that xi is the coarsest
partition of the chain. Let us say that two equivalence classes of xi are of the same type if
they are in the same orbit of the action of G. This is an equivalence relation on the set
of equivalence classes of xi . We say that there are s different types of equivalence classes
of xi , and there are t1 classes of type 1, t2 classes of type 2 and so forth. It is easy to see
that in this case G is isomorphic to a group of the form G ∼= K1 
 �t1 × · · · × Ks 
 �ts

Here Kj is the group of automorphisms (in �n1 × · · ·×�nk
) of the restriction of the chain

σ = [x0 < · · · < xi] to an equivalence class of xi of type j. We conclude that if G acts
isotypically on n, then either G is trivial, or s = 1 and G ∼= K1 
 �t1 . Furthermore, if G
acts isotypically on n, then K1 has to act isotypically on a component of xi . The lemma
follows by induction. �

Homotopy theory often deals with computations “one prime at a time”, and some-
times p-local questions about a given G-space X can be answered using only its fixed
point spaces under p-groups. For example, Theorem 6.4 of [Dwy98] (cf. also Theorem A
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of [Web91] and Proposition 4.6. of [ADL16]) specifies conditions under which the Bre-
don homology H̃

Br
∗ (X,μ) of X with coefficients in a Mackey functor μ can be computed

in terms of the fixed points of X under p-groups.
The fixed point spaces |�n|P of partition complexes under p-groups are therefore

of distinguished importance. The first-named author, William Dwyer, and Kathryn Lesh
have shown in Proposition 6.2. of [ADL16] that |�n|P is contractible unless the p-group
P is abelian and acts freely. Our Theorem 6.2 allows us to compute all non-contractible
fixed point spaces of partition complexes under p-groups:

Corollary 6.8. — Let P ⊂ �n be a p-group.

(1) If P ∼= Fk
p is elementary abelian acting freely on n for n = mpk (here p may divide m),

we have AffFk
p
:= N�

pk
(Fk

p)
∼= Fk

p � GLk(Fp) and AffFk
p
�m

:= N�n
(Fk

p)
∼= (Fk

p)
m

�

(GLk(Fp) × �m).

There is an AffFk
p
�m

-equivariant simple homotopy equivalence

|�n|P �−−→ Ind
Aff

Fk
p 
�m

Aff
Fk

p
×�m

(|BT(Fk
p)|� ∧ |�m|�).

As before, BT(Fk
p) denotes the poset of proper nontrivial subspaces of the vector space Fk

p.

Nonequivariantly, this implies that |�n|P is a bouquet of (m − 1)! · pk(m−1)+(k2
)

spheres of

dimension m + k − 3.

(2) If the action of P is not of this form, then |�n|P is W�n
(P)-equivariantly contractible.

Proof. — Case (2) is Proposition 6.2. of [ADL16].
For (1), we observe that the action is isotypical. Theorem 6.2 (in its instance with

normaliser actions) gives an N�n
(Fk

p)-equivariant equivalence |�n|Fk
p �

Ind
N�n (Fk

p)

N�
pk

(Fk
p)×�m

(|�Fk
p
|Fk

p)� ∧ |�m|�. By Lemma 6.5, we have an isomorphism of posets

�
Fk

p

pk
∼= BT(Fk

p), which implies |�n|Fk
p ∼= |BT(Fk

p)|.
The standard action of Fk

p � GLk(Fp) on Fk
p induces an injection Fk

p � GLk(Fp) ↪→
�pk ; it is well-known and not hard to check that its image is precisely given by N�pn (Fn

p).
More generally, we consider the semidirect product (Fk

p)
m
�(GLk(Fp)×�m), where

GLk(Fp) acts diagonally via the standard action and �m permutes the various coordinates
of (Fk

p)
m. The standard action of this group on n =∐m

i=1 Fk
p gives rise to an embedding

(Fk
p)

m
� (GLk(Fp) × �m) ⊂ �n. We can check on generators that (Fk

p)
m

� (GLk(Fp) ×
�m) ⊂ N�n

(Fk
p). Given any τ ∈ N�n

(Fk
p), we can find σ ∈ (Fk

p)
m

� (GLk(Fp) × �m) for
which στ sends each Fk

p-orbit to itself, fixes the zero elements in each copy of Fk
p, and

restricts to the identity on the first copy. These conditions imply that στ is the identity
and hence τ ∈ (Fk

p)
m

� (GLk(Fp) × �m). Claim (1) follows.
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For the nonequivariant claim in (1), we count that the index of (Fk
p � GLk(Fp)) ×

�m inside (Fk
p)

m
� (GLk(Fp) × �m) is given by (pk)m−1 and combine this with the well-

known facts that |�m| is nonequivariantly equivalent to a wedge sum of (m−1)! spheres of
dimension m − 3, that |BT(Fk

p)| is nonequivariantly equivalent to a wedge of p
(k

2

)

spheres
of dimension k − 2. �

Example 6.9. — For p = 5, k = 2, and m = 3, we have n = 75 and the space |�75|F2
5

of F2
5-invariant partitions of the set {1, . . . ,75} ∼= ∐3 F2

5 illustrated on the right splits
nonequivariantly as a bouquet of 6250 copies of the 2-dimensional sphere S2.

7. An EHP sequence for commutative monoid spaces

In this section, we will construct an EHP-like sequence for strictly commutative
monoid spaces. This sequence will be a key tool in our subsequent study of strict Young
quotients of the partition complex and our computation of the algebraic André-Quillen
homology of trivial square-zero extensions over Fp for p odd.

7.1. Commutative monoid spaces and simplicial commutative monoids. — We begin by set-
ting up the theory of commutative monoid spaces. Heuristically, it is often helpful to
think of commutative monoid spaces as simplicial commutative rings over the field with
one element.

We use point-set models in order to facilitate our later definition of a new EHP-like
sequence. Write Top∗ for the category of pointed (compactly generated weak Hausdorff)
spaces, endowed with the usual Quillen model structure. Our definitions and results will
be given for graded commutative monoid spaces – this will allow us to decompose the
EHP-like sequence into graded components.

We fix a commutative indexing monoid J with identity 0 ∈ J (in sets) once and for
all. We write TopJ

∗ for the category of functors X(−) : J → Top∗ and give it the model
structure whose fibrations, cofibrations, and weak equivalences are defined pointwise.
Objects X ∈ TopJ

∗ will be called J-graded spaces. We will often think of them as pointed
spaces X together with a wedge decomposition X =∨j∈J Xj , by gluing together all base-
point 0j ∈ Xj to a single point 0.

The category TopJ
∗ is endowed with a symmetric monoidal structure given by Day

convolution: we set (X ∧ Y)k :=∨a+b=k Xa ∧ Yb. The unit is given by S0 concentrated in
degree 0 ∈ J.
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Definition 7.1. — A J-graded commutative monoid space is a commutative monoid object in the

symmetric monoidal category TopJ
∗. We write CMonJ for the category of J-graded commutative monoid

spaces and let T be the monad on TopJ
∗ building the free such monoid.

We will now unravel this definition. A J-graded monoid space R consists of a
pointed space R together with a decomposition

∨
j∈J Rj = R, a continuous multiplica-

tion map · : R × R → R, and a distinguished element 1 ∈ R0, such that the following
three conditions hold true:

(1) The multiplication is associative and commutative.
(2) The element 1 acts as a unit and the basepoint 0 satisfies 0 · x = 0 for all x ∈ R.
(3) The multiplication respects the grading, i.e. x · y ∈ Rj1+j2 for x ∈ Rj1 and y ∈ Rj2 .

Theorem 7.2 (Schwänzl–Vogt [SV91]). — The category CMonJ of J-graded commutative

monoid spaces admits the structure of a cofibrantly generated model category, where a map f is a fibration

or weak equivalences if and only if the underlying map of in TopJ
∗ has the corresponding property.

Any cofibration f in CMonJ can be written as a retract of a transfinite composition
of relatively free maps A → B, i.e. maps given by pushouts

T(X)
T(f )

> T(Y)

A
∨

> B
∨

for f : X → Y pointwise a coproduct of generating cofibration of pointed spaces.
Strict pushouts of J-graded commutative monoid spaces are computed by relative

smash products:

Proposition 7.3. — If C ← A → B is a span of J-graded commutative monoid spaces, then

B∧A C is the pushout of B ← A → C. Here B∧A C is defined as the coequaliser coeq(B∧A∧C ⇒
B ∧ C), endowed with the multiplication (b1, c1) · (b2, c2) = (b1b2, c1c2).

We can place CMon in the framework of Batanin-Berger [BB17] and White
[Whi17]. By (an evident graded generalisation of) Theorem 5.4. in [Whi17] and Lemma
2.3. in [Hov98], the category TopJ

∗ satisfies White’s strong commutative monoid axiom
and the monoid axiom, respectively.

We say that a J-graded commutative monoid space is well-pointed if each of its com-
ponents is a well-pointed space. Proposition 3.5 in [Whi17] implies that if M → N is a
cofibration of J-graded commutative monoid spaces and M is well-pointed, then so is
N. In particular, every cofibrant such monoid space is well-pointed. The following result
appears as Theorem 4.18 in [Whi17] (generalising Theorem 3.1 in [BB17]):
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Theorem 7.4 (Batanin-Berger, White). — The model structure on CMonJ is relatively left

proper. This means that given a cofibration A
g−→ C and a weak equivalence A

f−→ B in CMonJ with

A,B well-pointed, the following pushout gives rise to a weak equivalence h:

A
f
> B

C

g∨
h
> D.

∨

Relative left properness allows us to explicitly compute certain homotopy pushouts:

Lemma 7.5. — Assume we are given a pushout of J-graded commutative monoid spaces

A > B

C

j∨
> D

∨

with j a cofibration and A, B, C well-pointed. Then the square is a homotopy pushout square.

Proof. — We apply the usual argument for left proper model categories in the rel-
ative setting. �

We introduce some variants. Let S0 be the monoid with two elements in degree 0
(the unit of J).

Define the category CMonJ,aug of augmented J-graded commutative monoid spaces as the
overcategory CMonJ

/S0 . It inherits a natural model category structure from CMonJ such
that the forgetful functor preserves fibrations, cofibrations, and weak equivalences.

We write CMonJ,nu for the category of nonunital J-graded commutative monoid
spaces, which are algebras over the monad T>0(X) =∨n>0 X∧n/�n

. Once more, this cate-
gory is endowed with a model category structure whose fibrations and weak equivalences
are defined on the level of spaces.

The augmentation ideal functor I(−) : CMonJ,aug → CMonJ,nu takes an augmented
monoid space A → S0 and assigns the preimage of the basepoint 0 ∈ S0. Every J-graded
nonunital commutative monoid space X gives rise to a unital augmented monoid space
S0 ∨ X by adding a disjoint unit 1. The functors I and S0 ∨ (−) do not assemble to an
equivalence.

We can carry out a similar construction for the symmetric monoidal model cate-
gory (sSet∗,∧,S0) of pointed simplicial sets, following Quillen to define a model structure
on its category SCMJ of J-graded simplicial commutative monoids. Weak equivalences
and fibrations are defined using the forgetful functor to sSetJ

∗. Again, there is are aug-
mented/nonunital versions SCMJ,aug , SCMJ,nu.



THE ACTION OF YOUNG SUBGROUPS ON THE PARTITION COMPLEX 113

7.2. Extension of scalars. — Given a ring R and a commutative monoid space X,
we will produce a simplicial commutative R-algebra R ⊗ X. Heuristically speaking, we
extend scalars from F1 to R. Consider the Quillen adjunction F̃R : sSet∗ � sModR : U,
where U is the forgetful functor and F̃R(∗ → X) = coker(FreeModR(∗) → FreeModR(X)) is
the reduced levelwise free R-module construction. This above adjunction is monoidal.
Passing to J-graded monoids, we obtain Quillen adjunctions SCMJ � SCRJ

R and
SCMJ,aug � SCRJ,aug

R , whose constituent left and right components will also be denoted
by F̃R and U, respectively. Here SCRJ

R denotes the model category of J-graded sim-
plicial commutative R-algebras, i.e. commutative monoids in the category of functors
J → sModR (equipped with Day convolution) with fibrations and weak equivalences
defined pointwise on underlying simplicial sets. The model category SCRJ,aug

R is a cor-
responding augmented variant. Note that no Koszul sign rule is imposed “in the J-
direction”.

Definition 7.6. — The functor R ⊗ (−) : CMonJ Sing•−−→ SCMJ F̃R−→ SCRJ
R given by com-

posing singular chains with the levelwise free R-module construction is called extension of scalars to R.

We denote the corresponding functor CMonJ,aug −→ SCRJ,aug

R by the same name.

Proposition 7.7. — The functor R ⊗ (−) preserves weak equivalences and homotopy colimits.

Proof. — If M → N is a weak equivalence of J-graded commutative monoid spaces,
then it is a weak equivalence of underlying J-graded spaces. The morphisms Sing•(M) →
Sing•(N) and (F̃R ◦Sing•)(M) → (F̃R ◦Sing•)(N) are weak equivalences of simplicial sets
and hence also weak equivalences of simplicial commutative monoids and simplicial R-
algebras, respectively.

To see preservation of homotopy colimits, we observe that the functor Sing• :
CMonJ → SCMJ is the right half of a Quillen equivalence, which implies that its right
derived functor R Sing• preserves homotopy colimits. Since monoid spaces are fibrant,
Sing• computes its own right derived functor and thus preserves homotopy colimits. The
functor F̃R is left Quillen, and so its left-derived functor LF̃R preserves homotopy col-
imits. If Q → id is the cofibrant replacement functor on SCMJ, we use that F̃R pre-
serves weak equivalences to see that LF̃R(X) ∼= F̃R(QX)

∼−→ F̃R(X) is a weak equiva-
lence. Hence, given D : I → SCMJ, we compute F̃R(hocolimID)

∼←− LF̃R(hocolimID) �
hocolimI((LF̃R) ◦ D)

∼−→ hocolimI(F̃R ◦ D). In the last step, we used that the pointwise
equivalence of diagrams F̃R ◦ Q ◦ D → F̃R ◦ D induces an equivalence on homotopy
colimits. �

7.3. Monoid modules over commutative monoid spaces. — A monoid R ∈ CMonJ is
simply an algebra object in (TopJ

∗,S0,∧), and so there is a naturally defined theory
of R-modules. We write MModJ

R for the resulting category and call its members J-
graded R-monoid modules. We unpack the definition: a J-graded R-monoid module is a
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pointed space M together with a decomposition M = ∨j∈J Mj and continuous action
maps · : R × M → M such that:

(1) The action of R on M is associative.
(2) The element 1 ∈ R acts as the identity and 0 · m = 0M for all m ∈ M.
(3) The multiplication respects the gradings, i.e. r · m ∈ Mj1+j2 for r ∈ Rj1 , m ∈ Mj2 .

We glued together all basepoints 0M,j of Mj to a single point 0M.
We can also think of J-graded R-monoid modules as algebras over the monad

X �→ R ∧ X.

Warning 7.8. — If R is a topological ring, then the notion of an R-module is (evi-
dently) not equivalent to the notion of a monoid module over the underlying commutative
monoid space.

The category MModJ
R carries a symmetric monoidal structure given by the rela-

tive smash product M ∧R N := coeq(M ∧ R ∧ N ⇒ M ∧ N). By applying Theorem 2.3.
in [SS00], we have:

Theorem 7.9 (Schwede-Shipley). — The category (MModJ
R,∧R,R) of R-monoid objects in

TopJ
∗ carries the structure of a cofibrantly generated monoidal model category where a map f is a fibration

or weak equivalences iff the underlying map of pointed spaces has this property. Moreover, ∧R satisfies the

monoid axiom.

Again, cofibrations are retracts of transfinite compositions of relatively free maps
A → B. In this context, these are maps which can be obtained as pushouts

R ∧ X
R ∧ f

> R ∧ Y

A
∨

> B
∨

for f : X → Y a pointwise coproduct of generating cofibrations of pointed spaces. We
observe:

Proposition 7.10. — The pushout of a diagram M1 ← M0 → M2 in MModJ
R is given by

taking the pushout M1

∐

M0

M2 in TopJ
∗ and endowing it with the evident R-multiplication.

Given a J-graded R-monoid module M and a J-graded pointed space X, we endow
the J-graded space M ∧ X with the structure of an R-monoid module by acting only on
the M-factor.

We call a J-graded R-monoid module well-pointed if its underlying J-graded space
has this property.
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Lemma 7.11. — Smashing with a cofibrant J-graded R-monoid module M preserves weak

equivalences between well-pointed J-graded R-monoid modules.

Proof. — Say that M has property (∗) if it satisfies the conclusion of the theorem.
Since retracts of modules with property (∗) have property (∗), we may assume that 0 → M
is given by a transfinite composition 0 = M0 → M1 → ·· · → M, where Mi is obtained
from Mi−1 through a pushout

R ∧ Ai

R ∧ fi
> R ∧ Bi

Mi−1

∨
> Mi

∨
.

Here the top map fi : Ai → Bi is a coproduct of generating cofibration of J-graded pointed
spaces. Since the filtered colimit of weak equivalences of J-graded pointed spaces is a weak
equivalence, it suffices to check that if Mi satisfies (∗), then so does Mi+1.

We first observe that if X is a well-pointed J-graded space, then R∧X has property
(∗).

We will now prove that if Mi satisfies (∗), then so does Mi+1. Let S → T be a weak
equivalence of well-pointed J-graded R-monoid modules. We consider the cube

S ∧
R

(R ∧ Ai) > S ∧
R

(R ∧ Bi)

T ∧
R

(R ∧ Ai) >

�
>

T ∧
R

(R ∧ Bi)

�
>

S ∧
R

Mi

∨
> S ∧

R
Mi+1

∨

T ∧
R

Mi

∨
>

�
>

T ∧
R

Mi+1

∨>

.

The three indicated arrows are weak equivalences by our previous argument and the
induction hypothesis. The horizontal maps in the top square are given by smashing a
cofibration of J-graded well-pointed spaces with the J-graded well-pointed spaces S and
T respectively, hence these two maps are cofibrations of J-graded well-pointed spaces.
Since pushouts of J-graded monoid modules are computed in J-graded pointed spaces,
we conclude that the front and back square are homotopy pushouts of pointed spaces.
This implies that the lower right map is a weak equivalence of J-graded spaces, hence of
J-graded R-monoid modules. �

7.4. Derived smash product of monoid modules. — We will now define an explicit model
for the derived relative smash product of graded monoid modules. For this, it will be convenient
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to use �k = {0 ≤ t1 ≤ · · · ≤ tk ≤ 1 | ti ∈ R} as a model for the k-simplex. We think of �k
+

as a J-graded pointed space concentrated in degree 0.
Fix a well-pointed R ∈ CMonJ and two well-pointed monoid modules M,N ∈

MModJ
R. For k ∈ N, we write points in the J-graded space �k

+ ∧ M ∧ R∧k ∧ N as
{(

0 ≤ t1 ≤ . . . ≤ tk ≤ 1

m , r1 , . . . , rk , n

)
∣
∣
∣ ti ∈ R, ri ∈ R,m ∈ M, n ∈ N

}

For the sake of readability, we often drop the second clause of this expression. We define:

Definition 7.12. — Given M,N ∈ MModR, we define the space

M
h∧
R

N = |Bar•(M,R,N)| =
(∨

k≥0

�k
+ ∧ M ∧ R∧n ∧ N

)/

∼

Here ∼ divides out by face and degeneracy maps. More explicitly, we quotient out by:

(
0 ≤ . . . ≤ ti = ti+1 ≤ . . . ≤ 1

m , . . . , ri , ri+1 , . . . , n

)

∼
(

0 ≤ . . . ≤ ti ≤ . . . ≤ 1

m , . . . , ri · ri+1 , . . . , n

)

(
0 ≤ . . . ≤ ti ≤ ti+1 ≤ . . . ≤ 1

m , . . . , ri , 1 , . . . , n

)

∼
(

0 ≤ . . . ≤ ti ≤ ti+2 . . . ≤ 1

m , . . . , ri , ri+2 , . . . , n

)

.

The space M
h∧
A

N is naturally a J-graded R-monoid module by multiplication from the left.

If the unit S0 → R is a cofibration of spaces and both M and N are well-pointed,
then M ∧h

R N is well-pointed since the map S0 → M ∧h
R N is the realisation of a levelwise

cofibration between pointwise good J-graded simplicial pointed spaces.

7.5. Cofibrant replacement of monoid modules. — We can use the construction “M∧h
R N”

to define an explicit cofibrant replacement functor. For this, let R ∈ CMonJ be a well-
pointed graded commutative monoid space such that the unit S0 → R is a cofibrant map
of spaces.

Proposition 7.13. — Given a well-pointed J-graded R-monoid module M, the monoid module

R ∧h
R M is cofibrant and the multiplication map R ∧h

R M → M is a weak equivalence.
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Proof. — For each K ∈ Z≥0, consider DK = | skK Bar•(R,R,M)| = (
∨K

k=0 �k
+ ∧

R ∧ R∧k ∧ M)/ ∼. An R-monoid module structure on DK can be defined using the left-
most copy of R. We obtain a transfinite composition of R-monoid modules R ∧ M =
D0 ↪→ D1 ↪→ ·· · ↪→ R ∧h

R M. Since transfinite compositions of cofibrations are cofibra-
tions and the monoid module D0 is cofibrant, it suffices to prove that all of the above
maps are cofibrations in order to establish the first claim.

Let LK ⊂ R∧K denote the subspace of all points {(r1, . . . , rk) | ri ∈ R, ∃i s.t. ri = 1}.
There is a natural pushout of J-graded R-monoid modules

(∂�K
+ ∧ R ∧ R∧K ∧ M)

∐

∂�K+∧R∧LK∧M

(�K
+ ∧ R ∧ LK ∧ M) ⊂ > �K

+ ∧ R ∧ R∧K ∧ M

DK−1

∨
⊂ > DK

∨
.

Since cofibrations are closed under cobase change, it is enough to prove that the top hori-
zontal map is a cofibration of J-graded monoid modules. This map is obtained by starting
with the cofibration of J-graded pointed spaces (∂�K ∧R∧K ∧M)

∐
∂�K+∧LK∧M(�K

+ ∧LK ∧
M) → �K

+ ∧ R∧K ∧ M and applying the left Quillen functor R ∧ (−) – it is therefore a
cofibration. The first claim follows.

To prove that the map R ∧h
R M → M is an equivalence, it suffices to show that

this holds true for the underlying map of spaces. We note that this map is obtained from
the augmented simplicial space X• : Bar•(R,R,M) → M. The unit of R gives rise to a
backwards contracting homotopy S : Xn → Xn+1. This implies that we have a weak equiv-
alence after applying hocolim�op . Since S0 → R is a cofibration, this homotopy colimit is
computed by the geometric realisation. �

Since M ∧h
R N ∼= M ∧R (R ∧h

R N), the derived smash product deserves its name.

7.6. Derived pushout of commutative monoid spaces. — We construct the derived pushout
as follows:

Definition 7.14. — If B ← A → C is a span of well-pointed J-graded commutative monoid

spaces, we endow the space B ∧h
A C with a multiplication satisfying

(
0 ≤ ti1 ≤ . . . ≤ tin ≤ 1

b1 , ai1 , . . . , ain , c1

)

·
(

0 ≤ tj1 ≤ . . . ≤ tjm ≤ 1

b2 , aj1 , . . . , ajm , c2

)
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=
(

0 ≤ t1 ≤ . . . ≤ tn+m ≤ 1

b1b2 , a1 , . . . , an+m , c1c2

)

for any disjoint union {1 < · · · < m + n} = {i1 < · · · < in}∐{j1 < · · · < jm}.
Observe that this multiplication is well-defined, commutative and associative.

Proposition 7.15. — Assume we are given a span of well-pointed J-graded commutative monoid

spaces B ← A → C and that the unit of A is a cofibration of spaces. The square

A ⊂ > A
h∧
A

C

B
∨

⊂ > B
h∧
A

C

∨

is a pushout, and in fact a homotopy pushout in CMonJ.

Proof. — It is evident that the square is indeed an ordinary pushout square. In

order to prove the second claim, we factor (A
g−→ B) = (A

g′−→ B′ w−→ B) as a cofibration

followed by a trivial fibration in CMonJ. The fact that A is well-pointed and A
g′−→ B′ is a

cofibration implies that B′ is well-pointed. The space A ∧h
A C also has this property. We

obtain a diagram

A > A
h∧
A

C

h

B′
∨

> B′ h∧
A

C

∨

B
∨

> B
h∧
A

C

∨
.

The upper square is a homotopy pushout by Lemma 7.5 since A → B′ is a cofibration.
The (underlying) map of A-monoid modules B′ ∧h

A C → B ∧h
A C can be obtained

by smashing the weak equivalence B′ → B of well-pointed A-monoid modules with the
cofibrant J-graded A-monoid module (A ∧h

A C). This implies by Lemma 7.11 that B′ ∧h
A

C → B ∧h
A C is a weak equivalence of A-monoid modules and hence also of graded

commutative monoid spaces. �

We now turn to augmented commutative monoid spaces. As explained in Lemma
1.3. of [Hir15], pushouts are computed in monoid spaces.

Definition 7.16. — The suspension �⊗A ∈ CMonJ,aug of an augmented well-pointed J-

graded commutative monoid space A → S0 is given by S0 h∧
A

S0.
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Remark 7.17. — This construction also appears in the work of McCord [McC69]
and Kuhn [Kuh04]. It is a model for the suspension in the pointed ∞-category of aug-
mented commutative monoid spaces.

Definition 7.18. — A sequence A → B → C in CMonJ,aug (or in SCRJ,aug ) is a cofibre

sequence if the following square is a homotopy pushout:

A > B

h

S0
∨

> C.
∨

We can detect cofibre sequences of monoid spaces algebraically:

Lemma 7.19. — Let A −→ B → C be a sequence of monoid spaces in CMonJ,aug for which

the induced sequence Z ⊗ A → Z ⊗ B → Z ⊗ C is a cofibre sequence in SCRaug .

Then A → B → C is a cofibre sequence of J-graded augmented commutative monoid spaces.

Proof. — We take the cofibre of the first map, i.e. the homotopy pushout of f

against A → S0:

A
f
> B > C

cofib(f )

k
∧

>

The original sequence is a homotopy cofibre sequence if and only if k is a weak equiv-
alence of J-graded spaces. We apply the reduced integral chains functor Z ⊗ (−) and
obtain a diagram

Z ⊗ A
Z ⊗ f

> Z ⊗ B > Z ⊗ C

Z ⊗ cofib(f ).

Z ⊗ k∧
>

As Z ⊗ (−) preserves homotopy colimits (cf. Proposition 7.7), we see that Z ⊗ cofib(f ) �
cofib(Z ⊗ f ). Our assumption implies that Z ⊗ k is a weak equivalence, and hence k

induces an isomorphism on integral homology. Commutative monoid spaces are in par-
ticular H-spaces, and therefore simple, so Whitehead’s theorem implies that k is a weak
equivalence. �

7.7. Derived pullbacks of commutative monoid spaces. — The theory of pullbacks is sub-
stantially more straightforward since fibrations are transported from J-graded pointed
spaces.
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Definition 7.20. — Given a cospan B
f−→ A

g←− C of J-graded commutative monoid spaces,

we write AI for the J-graded space whose jth component is AI
j := MapTop([0,1],Aj). We endow the

J-graded space B×h
A C defined by (B×h

A C)j := {(b,α, c) ∈ Bj ×AI
j ×Cj | α(0) = f (b),α(1) =

g(c)} with a commutative monoid structure given by (b1,α1, c1) · (b2,α2, c2) = (b1b2,α1α2, c1c2).

Here the path α1α2 is defined using pointwise multiplication in A.

Proposition 7.21. — The homotopy pullback of a cospan B
f−→ A

g←− C of J-graded commuta-

tive monoid spaces is given by B ×h
A C (in the sense of Definition 7.20 above).

Proof. — We define D by a homotopy pullback in J-graded commutative monoid
spaces:

B
h×
A

C

D >

>

C
>

h

B
∨

>

>

A
∨

As the forgetful functor U : CMonJ → TopJ
∗ is right Quillen, its right derived functor

preserves homotopy pullbacks. The functor U in fact computes its own right derived
functor since all graded commutative monoid spaces are fibrant. Thus, U preserves ho-
motopy pullbacks. After applying U, the dashed arrow is a weak equivalence since B×h

A C
computes the homotopy pullback in TopJ

∗. �

Definition 7.22. — Given a J-graded commutative monoid space A ∈ CMonJ, the homotopy

pullback S0 ×h
A S0 is denoted by �⊗A.

Remark 7.23. — The monoid �⊗A models the loop object of A in the pointed
∞-category of augmented J-graded commutative monoid spaces.

Remark 7.24. — If A → S0 has fibres A0 and A1 over 0 and 1, then the underlying
J-graded space of �⊗A is given by �A = �A0

∐
�A1.

7.8. The suspension-loops adjunction. — We will now set up a Quillen adjunction

�⊗ : CMonJ,aug � CMonJ,aug : �⊗
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by defining the unit ηA and the counit εA by

ηA : A → �⊗�⊗A

by a �→ αa :=
(

(0 ≤ s ≤ 1) �→
(

0 ≤ s ≤ 1

a

))

εA : �⊗�⊗A → A

by

(
0 ≤ t1 ≤ . . . ≤ tn ≤ 1

α1 , . . . , αn

)

�→ α1(t1) · . . . ·αn(tn)

It is readily verified that ε�⊗ ◦ �⊗η and �⊗ε ◦ η�⊗ are indeed given by the identity
transformations and we have therefore defined an adjunction.

Lemma 7.25. — The adjunction �⊗ : CMonJ,aug � CMonJ,aug : �⊗ is Quillen.

Proof. — Let f : X → Y be a fibration or acyclic fibration in CMonJ,aug . Then f

is a fibration or acyclic fibration of underlying graded spaces. Write f0 : X0 → Y0 and
f1 : X1 → Y1 for the maps induced on fibres over 0 and 1. The map �⊗(f ) is given
on graded spaces by �(f0)

∐
�(f1) and hence a fibration or acyclic fibration of graded

spaces. This implies that �⊗(f ) is a fibration or acyclic fibration of commutative monoid
spaces. �

7.9. André-Quillen homology for commutative monoid spaces. — We will follow Quillen’s
general approach in the context of J-graded commutative monoid spaces.

Definition 7.26. — The indecomposables functor Q : CMonJ,nu → TopJ
∗ assigns to a J-

graded nonunital commutative monoid space A the quotient space Q(A) = A/A · A
Here A · A ⊂ A is the J-graded space consisting of all elements which can be decomposed into a

product of two elements in A. We can also form square-zero extensions:

Definition 7.27. — Given a J-graded space X, write X for the nonunital J-graded commutative

monoid space obtained by declaring all products x · y of points in X to be equal to 0.

As expected, these functors form a Quillen adjunction

Q : CMonJ,nu >
< TopJ

∗ : (−).

Definition 7.28. — The André-Quillen chains of a nonunital J-graded commutative monoid

space A ∈ CMonJ,nu are the value of the left derived functor L(Q) at A, i.e. AQ(A) = L(Q)(A) ∈
Ho(TopJ

∗). The André-Quillen chains of an augmented L-graded commutative monoid space are given

by AQ(IA), where IA denotes the augmentation ideal of A (i.e. the fibre over 0).

The André-Quillen homology of an augmented monoid space is given by H̃
Q
∗ (A) :=π∗(AQ(A)).
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We give a formula for the André-Quillen chains of a graded commutative monoid
space. Write T>0 for the monad building the free J-graded nonunital commutative
monoid space. Then:

Proposition 7.29. — If A ∈ CMonJ,nu is a nonunital commutative monoid space, then the

André-Quillen chains of A are given by AQ(A) � hocolim�op(Bar•(1,T>0,A)).

Proof. — The J-graded nonunital simplicial commutative monoid space
Bar•(T>0,T>0,A) → A has a contracting homotopy. Hence hocolim�op(Bar•(T>0,

T>0,A)) ∼= A. Since the left derived functor LQ preserves homotopy colimits, we com-
pute

AQ(A) = L(Q)(A) � hocolim
�op

L(Q)(Bar•(T>0,T>0,A))

� hocolim
�op

(Bar•(1,T>0,A)) �

We will now see that André-Quillen chains for J-graded commutative monoid
spaces behave well under “base-change” to ordinary rings. We fix an ordinary ring R
and write Q : SCRJ,nu

R → sModJ
R for the indecomposables functor on nonunital J-graded

simplicial commutative R-algebras. Recall:

Definition 7.30. — The André-Quillen chains of a nonunital J-graded simplicial commutative

R-algebra A are defined as AQR(A) := L(Q)(A) ∈ Ho(sModR). We write AQR
∗ (A) for the

homology and AQ∗
R(A) for the cohomology groups of AQR(A).

Let Sym>0
R (X) =⊕n>0 X

⊗Rn

�n be the free nonunital J-graded simplicial commuta-
tive R-algebra monad on J-graded simplicial R-modules. We can again give an explicit
formula for the André-Quillen chains as AQR(A) = hocolim�op Bar•(1,Sym>0

R ,A).
We recall that reduced R-valued chains C̃•(−,R) interact well with symmetric pow-

ers, i.e.

C̃•(T>0(X),R) ∼= Sym>0(C̃•(X,R))

for all J-graded spaces X. André-Quillen chains therefore intertwine with extension of
scalars:

Lemma 7.31. — There is a commutative square

Ho(CMonJ,nu)
AQ

> Ho(TopJ
∗)

Ho(CAlgJ,nu

R )

R ⊗ (−)∨
AQR

> Ho(sModJ
R)

C̃•(−,R)∨
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Proof. — Given a nonunital J-graded commutative monoid space A, we compute

C̃•(AQ(A),R) � (C̃•(−,R) ◦ L(Q))(A)

� hocolim
�op

(C̃•(Bar•(1,T>0,A),R))

� hocolim
�op

(Bar•(1,Sym>0, C̃•(A,R)) � AQR(R ⊗ A)

Here we used that C̃•(−,R) preserves homotopy colimits. �

7.10. An EHP sequence in CMon. — In this section, we will construct a new cofi-
bre sequence for J-graded commutative monoid spaces. The “Hopf map” is difficult to
define, and this is where our point-set approach becomes helpful. We recall the following
notation:

Definition 7.32. — Given a J-graded space X, the trivial square-zero extension of S0 on X,

written S0 ∨ X ∈ CMonaug , is given by endowing the space S0 ∨ X with the multiplication

x · y =

⎧
⎪⎨

⎪⎩

x if y = 1
y if x = 1
0 else

Algebraic and topological square-zero extensions interact well, i.e. we have

R ⊗ (S0 ∨ X) = R ⊕ C̃•(X,R).

The monoid suspension �⊗ of a trivial square zero extension admits an explicit
description:

Proposition 7.33. — Given a J-graded pointed space X, there is a splitting of J-graded spaces

�⊗(S0 ∨ X) ∼=
∨

n≥0

Sn ∧ X∧n

Proof. — This is clear from Definition 7.12 as points in X multiply to zero
in S0 ∨ X. �

For the Hopf map, fix a J-graded pointed space X and define a map φ of J-graded
pointed spaces as

S1 ∧ X∧2 −→ �(S2 ∧ X∧2) ↪→ �(
∨

n≥1

Sn ∧ X∧n) ∼= �⊗�⊗(S0 ∨ X)

(0 ≤ t ≤ 1, x, y) �→
(

s �→
(

0 ≤ ts ≤ s ≤ 1

x y

))
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Proposition 7.34. — Given two points a1, a2 ∈ S1 ∧ X∧2, we have φ(a1) · φ(a2) = 0.

Proof. — Write ai = (0 ≤ ti ≤ 1, xi, yi) for i = 1,2. Then:

φ(a1) · φ(a2) =
(

s �→
(

0 ≤ t1s ≤ s ≤ 1

x1 , y1

)

·
(

0 ≤ t2s ≤ s ≤ 1

x2 , y2

))

=
(

s �→ 0
)

We used that a coordinate is repeated and products of elements in X vanish in S0 ∨ X.
�

We get a map φ : (S0 ∨ �X∧2) → �⊗�⊗(S0 ∨ X) of J-graded augmented
commutative monoid spaces.

Definition 7.35. — The Hopf map for J-graded augmented commutative monoid spaces is given

by the adjoint H : �⊗(S0 ∨ �X∧2) −→ �⊗(S0 ∨ X) of φ.

More explicitly, H is given by the following map:
(

0 ≤ s1 ≤ . . . ≤ sn ≤ 1

(t1, x1, y1) . . . (tn, xn, yn)

)

�→
(

0 ≤ t1s1 ≤ s1 ≤ 1

x1 , y1

)

· . . . ·
(

0 ≤ tnsn ≤ sn ≤ 1

xn , yn

)

Proposition 7.36. — There is a commutative diagram

S1 ∧ (�X∧2)
∼

> S2 ∧ X∧2

�⊗(S0 ∨ �X∧2)

∨
∩

H
> �⊗(S0 ∨ X)

∨
∩

The top map is the weak equivalence

(
0 ≤ s ≤ 1

(t, x, y)

)

�→
(

0 ≤ ts ≤ s ≤ 1

x , y

)

We define the second map E in our EHP sequence:

Definition 7.37. — The map E : �⊗(S0 ∨ X) → (S0 ∨ �X) of J-graded augmented com-

mutative monoid spaces given by collapsing all higher summands to the basepoint is called the Einhängung.
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Proposition 7.38. — Note that the following diagram commutes:

�X

�⊗(S0 ∨ X)

∨
> S0 ∨ �X.

>

Definition 7.39. — The EHP sequence based at a J-graded space X is given by the following

sequence of J-graded augmented commutative monoid spaces:

�⊗(S0 ∨ �X∧2)
H−→ �⊗(S0 ∨ X)

E−→ S0 ∨ �X.

Proposition 7.40. — The composite E◦H factors through the zero object S0.

Proof. — This follows immediately from our explicit description of the map H. �

Let J = N be the monoid of nonnegative integers with +. We prove the main
theorem of this section:

Theorem 7.41. — For X = Sn a sphere of even dimension, thought of as an N-graded space

placed in degree 1, the EHP sequence

�⊗(S0 ∨ S2n+1)
H−→ �⊗(S0 ∨ Sn)

E−→ S0 ∨ Sn+1

is a homotopy cofibre sequence of augmented N-graded strictly commutative monoid spaces.

Here Sn+1 = �Sn is placed in degree 1 and S2n+1 = �(Sn)∧2 is placed in degree 2.

Proof. — By Lemma 7.19, it suffices to prove that this sequence is a cofibre se-
quence after extension of scalars to Z. Hence, we need to check that the following se-
quence of simplicial commutative rings is a cofibre sequence:

�⊗(Z ⊕ �2n+1Z)
Z ⊗ H

> �⊗(Z ⊕ �nZ)
Z ⊗ E

> Z ⊕ �n+1Z.

Here we made use of the weak equivalence C̃•(S0 ∨ Sm) ∼= Z ⊕ �mZ.
Let D be the cofibre of the first map. By the folklore computation of Tor groups of

graded exterior algebras (cf. e.g. [McC01, Chapter 7]), we have:

π∗(�⊗(Z ⊕ �2n+1Z)) = �[y2n+2]
π∗(�⊗(Z ⊕ �nZ)) = �[zn+1] ⊗ �[y2n+2]
π∗(Z ⊕ �n+1Z) = �[zn+1]

Propositions 7.36 and 7.38 show that Z ⊗ H and Z ⊗ E map elements to elements with
same name. There is a spectral sequence E2

p,q = (Tor�[y2n+2]
p (Z,�[zn+1] ⊗ �[y2n+2]))q ⇒
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πp+q(D). Since �[zn+1] ⊗ �[y2n+2] is free over �[y2n+2], the edge homomorphism E2
0,q =

Z ⊗�[y2n+2] (�[xn+1] ⊗ �[y2n+2]) → πq(D) is an isomorphism. The composite Z ⊗�[y2n+2]
(�[zn+1] ⊗ �[y2n+2]) → π∗(D) → π∗(Z ⊕ Z[n + 1]) ∼= �[zn+1] is evidently an isomor-
phism as well. This implies that D → Z ⊕ Z[n + 1] is a weak equivalence of simplicial
commutative rings. �

8. Strict quotients

Given a Young subgroup �n1 × · · · × �nk
⊂ �n, we can ask the following

Question. — What is the homology and homotopy type of the strict quotient
�|�n|�/�n1×···×�nk

?

In this section, we will relate these quotients to the André-Quillen homology of
commutative monoid spaces and simplicial commutative rings, describe the conditions
under which they are wedges of spheres, use our EHP-like sequence and the branching
rule to decompose them into simpler “atoms”, and finally compute their homology with
coefficients in Q and Fp for any prime p.

8.1. Atomic decomposition. — Given a commutative indexing monoid J in sets with
unit 0, we recall the symmetric monoidal category TopJ

∗ of J-graded pointed spaces from
Section 7.1.

We consider the functor CLie : TopJ
∗ → TopJ

∗ defined as CLie(X) =∨
n≥1 �|�n|� ∧�n

X∧n, where �|�n|� is placed in degree 0 ∈ J. In order to answer
the above question, it evidently suffices to analyse CLie(X) for X = Sa1 ∨ · · · ∨ Sak

a wedge sum of k spheres, thought of as a Zk-graded space, where the spheres are
placed in degrees e1 = (1,0, . . . ,0), e2 = (0,1, . . . ,0), . . ., ek = (0,0, . . . ,1). We will
now decompose the spaces CLie(Sa1 ∨ · · · ∨ Sak) into atomic building blocks of the form
CLie(S�) =∨n≥1 �|�n|� ∧�n

(S�)∧n for � an odd natural number.

From wedges of spheres to spheres. — Given pointed spaces X1 ∨ · · · ∨ Xk , graded over
Zk by placing Xi in multi-degree ei , our Theorem 5.10 on Young restrictions gives an
equivalence

CLie(X1 ∨ · · · ∨ Xk) ∼=
∨

�1,...,�k
w∈B(�1,...,�k)

CLie(S�1+···+�k−1 ∧ X∧�1
1 ∧ · · · ∧ X∧�k

k )

The dth piece in the summand CLie(S�1+···+�k−1 ∧ X∧�1
1 ∧ · · · ∧ X∧�k

k ) has multi-degree
(d�1, . . . , d�k).
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Corollary 8.1. — If Xi = Sai , then we obtain an equivalence of Nk-graded spaces

CLie(Sa1 ∨ · · · ∨ Sak) ∼=
∨

�1,...,�k
w∈B(�1,...,�k)

CLie(S∧(a1+1)�1+···+(ak+1)�k−1)

Hence, it suffices to study the value of CLie on spheres to describe its behaviour on
wedges of spheres.

Restricting to multi-degree (n1, . . . , nk) with n =∑ ni , we obtain the double sus-
pension of the following statement (which also follows immediately from Theorem 5.10):

Proposition 8.2. — Suppose n = n1 + · · · + nk. There is an equivalence

|�n|/�n1×···×�nk

�−−→
∨

d|gcd(n1,...,nk)

w∈B(
n1
d ,...,

nk
d )

(

�−1(S
n
d −1)∧d ∧

�d

|�d |�
)

.

More generally, given pointed spaces X1, . . . ,Xk , there is an equivalence

|�n|� ∧
�n

(X1 ∨ · · · ∨ Xk)
∧n

�−−→
∨

n=n1+···+nk
d|gcd(n1,...,nk)

w∈B(
n1
d

,...,
nk
d

)

(

(S
n
d −1 ∧ X

n1
d

1 ∧ · · · ∧ X
nk
d

k )∧d ∧
�d

|�d |�
)

.

Corollary 8.3. — If gcd(n1, . . . , nk) = 1 then |�n|/�n1×···×�nk
�∨B(n1,...,nk)

Sn−3.

From spheres to odd spheres. — To reduce to the case of odd spheres (which is a key
simplification for our cohomological computations), we need a conceptual understanding
of the functor CLie, which is closely related to square zero extensions in commutative monoids
by the following observation:

Lemma 8.4. — If X is a well-pointed J-graded space, then AQ(S0 ∨ X) � CLie(X).

Proof. — Write Onu
Comm for the reduced operad in Top∗ whose component at a

finite set S is given by S0 if |S| �= 0 and by ∗ if S = ∅. All structure maps are the identity.
We can think of Onu

Comm as an algebra object in the category SSeq(Top∗) of symmetric
sequences in pointed spaces. Here the composition product serves as the monoidal structure.

There is a natural monoidal functor F : SSeq(Top∗) → End(TopJ
∗) sending a sym-

metric sequence O to the functor FO(−) =∨n On ∧�n
(−)∧n. We have T>0 = FOnu

Comm
=
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∨
n≥1(−)∧n/�n

. Using Proposition 7.29, we see that AQ(S0 ∨ X) is equivalent to

hocolim
�op

Bar•(1,FOnu
Comm

,X) � hocolim
�op

FBar•(Onu
Comm)(X)

�
∨

n≥1

�|�n|� ∧
�n

X∧n = CLie(X).

In the second equivalence, we have used the well-known identification (cf. [Fre] [Chi05])
between the simplicial set (Bar•(Onu

Comm))n and the simplicial model for �|�n|� described
in Section 2.9. �

Combining Lemma 8.4 with our EHP sequence for commutative monoid spaces
in Theorem 7.41, we can reduce the study of CLie evaluated on spheres to the study of
CLie evaluated on odd spheres:

Theorem 8.5. — For X a J-graded space, there is a natural sequence of pointed J-graded spaces

�CLie(�X∧2)
H−→ �CLie(X)

E−→ CLie(�X).

For X = Sn an even sphere in degree 1 ∈ J = N, we get a cofibre sequence of pointed N-graded spaces

�CLie(S2n+1)
H−→ �CLie(Sn)

E−→ CLie(Sn+1).

More explicitly, for each d ∈ N, there is a cofibre sequence

�2|� d
2
|� ∧

� d
2

(S2n+1)∧
d
2 → �2|�d |� ∧

�d

(Sn)∧d → �|�d |� ∧
�d

(Sn+1)∧d .

Here we use the convention that the space on the left is equal to the point if d is odd.

Example 8.6. — We unpack the EHP sequence at weight d = 2. Here, symmetric
squares can be expressed in terms of real projective spaces (cf. [JTTW63]) and we in fact

recover the cofibre sequence �n+3Sn−1 H−→ �n+3RPn−1 E−→ �n+3RPn.

Notation 8.7. — Extending the cofibre sequence above gives rise to a map

P : CLie(Sn+1)−→�2CLie(S2n+1).

Remark 8.8. — We suspect that the above sequence is induced by applying a con-
jectural strict variant of Goodwillie calculus to the classical EHP sequence in topology.

Proof of Theorem 8.5. — The first claim follows by applying AQ to the EHP se-
quence in Definition 7.39 and using that AQ preserves homotopy colimits to commute
suspension past the AQ functor.
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For the second claim, we again use that AQ preserves homotopy colimits to deduce

that the EHP-cofibre sequence �⊗(S0 ∨ S2n+1)
H−→ �⊗(S0 ∨ Sn)

E−→ S0 ∨ Sn+1 from The-

orem 7.41 gives a homotopy cofibre sequence of N-graded spaces � AQ(S0 ∨ S2n+1)
H−→

� AQ(S0 ∨ Sn)
E−→ AQ(S0 ∨ Sn+1). The result follows by applying Lemma 8.4, and the

final expression follows by passing to degrees. �

We have assembled CLie(S�1 ∨ · · · ∨ S�k) from the simpler spaces CLie(S�) for �

odd. This reduces the problem of analysing �|�n|�/�n1×···×�nk
to spaces of the form

�|�d |� ∧�d
(S�)∧d for � ≥ 1 odd.

8.2. The space CLie(S1). — We will now compute the André-Quillen homology of
the monoid S0 ∨ S1:

Lemma 8.9. — There is an equivalence of spaces CLie(S1) =∨d≥1 �|�d |� ∧�d
(S1)∧d �

S1. In fact, the space |�d |� ∧
�d

(S1)∧d is contractible for all d > 1.

In our computations, we may therefore often assume � �= 1 (which implies that
�−1|�d |� ∧�d

(S�)∧d is simply connected). Moreover, we can give a new proof of Kozlov’s
theorem [Koz, Corollary 4.3]:

Corollary 8.10 (Kozlov). — The quotient |�d |/�d is contractible for all d ≥ 2.

Proof. — Combine Lemma 8.9 with our EHP sequence (for n = 0) in Theorem 8.5.
�

To prove Lemma 8.9, we need an auxiliary result:

Lemma 8.11. — Let Y := �d1 × · · · × �di
be a non-trivial Young subgroup of �d , where

d = d1 + · · · + di. Let N be the normaliser of Y and let W be any group satisfying Y ⊆ W ⊆ N.

Equip Sd−1 with the standard action of �d . Then the orbit space Sd−1/W is contractible.

Proof. — We start by observing the well-known fact that the orbits space Sd−1/�d

is contractible for d > 1. One way to see this is to identify Sd−1 with |Bd |�, where Bd

again denotes the poset of proper, non-trivial subsets of the set d (Example 2.5). Then
Sd−1/�d

∼= |Bd |�/�d
. The quotient of the simplicial nerve of Bd by the action of �d is

isomorphic to the nerve of the linear poset 1 < 2 < · · · < d −1. In particular, its geometric
realisation is contractible.

For the general case, we first observe the Y-equivariant homeomorphism Sd−1 ∼=
Sd1−1 ∗ · · · ∗Sdi−1. It follows that Sd−1/Y

∼= Sd1−1/�d1
∗ · · · ∗Sdi−1/�di

. By our assumption, at
least one of the djs is greater than one, and so the right hand side is a contractible space.
Moreover, we claim that it is contractible as a N/Y-equivariant space. In other words, we



130 GREGORY Z. ARONE, D. LUKAS B. BRANTNER

claim that for every subgroup H ⊂ N/Y, the fixed point space (Sd1−1/�d1
∗· · ·∗Sdi−1/�di

)H

is contractible. To see this, observe that N/Y is a Young subgroup of �i (recall that i is the
number of factors �dj

of Y). N/Y acts on the space Sd−1 ∼= Sd1−1/�d1
∗ · · · ∗ Sdi−1/�di

by
permuting join factors that happen to be homeomorphic. It follows that the fixed point
space (Sd1−1/�d1

∗ · · · ∗ Sdi−1/�di
)H is a join of factors of the form Sdj−1/�dj

. Again, at least
one of the dj is greater than 1, so at least one of these factors is contractible, and therefore
the whole space is contractible.

It follows that the orbit space
(
Sd−1/Y

)
/H is contractible for every H ⊂ N/Y. Fi-

nally, it follows that for every Y ⊂ W ⊂ N, the orbit space Sd−1/W is contractible. �

Proof of Lemma 8.9. — The space Sd−1 ∧
�d

|�d |� is a pointed homotopy colimit of

spaces of the form Sd−1/G, where G is an isotropy group of |�d |�. We claim that the
space Sd−1/G is contractible for every G that occurs. From the claim it follows that the
pointed homotopy colimit is contractible.

It remains to prove the claim. Let G be an isotropy group of |�d |�. Then either
G = �d or G is the stabiliser group of a chain of proper non-trivial partitions of d.

In the first case, we have Sd−1/G = Sd−1/�d
� ∗. In the second case, suppose that

G is the stabiliser of the chain of partitions [x0 < · · · < xr]. Here x0 is the finest partition
in the chains. Suppose x0 has i equivalence classes of sizes d1, . . . , di . Write Y ∼= �d1 ×
· · · × �di

for the group of permutations that leave the equivalence classes of x0 invariant.
Then G contains Y and is contained in the normaliser of Y, and Sd−1/G is contractible
by Lemma 8.11. �

8.3. Homology of strict orbits. — We proceed to examine the homology of strict
Young quotients of the partition complex, or more generally of spaces of the form CLie(X)

for X a wedge of spheres. We begin with a conceptual interpretation of the homology of
spaces CLie(X). Given a ring R and a J-graded simplicial R-module M, we write R ⊕ M
for the trivial square zero extension of R by M.

Lemma 8.4 and Lemma 7.31 together imply:

Theorem 8.12. — If X is a well-pointed J-graded space and R is a ring, then

H̃∗ (CLie(X),R) = H̃∗

(∨

d≥1

�|�d |� ∧
�d

X∧d,R
)

∼= AQR
∗
(

R ⊕ C̃•(X,R)
)

.

An aside on operations. — We shall briefly digress and explain why the R-valued sin-
gular cohomology classes of the spaces CLie(S�1 ∨· · ·∨S�k) give rise to natural operations
on the algebraic André-Quillen homology groups of simplicial commutative R-algebras.

Write � for the endofunctor on simplicial R-modules corresponding to the left shift
on chain complexes. We observe that Lemma 7.31 and the standard adjunction between
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algebraic André-Quillen chains AQR and trivial square-zero extensions together imply
an identification

Hj(CLie(S�1 ∨ · · · ∨ S�k),R)

∼= MaphsModR
(AQR(R ⊕ (��1R ⊕ · · · ⊕ ��k R)),� jR)

∼= MaphSCRaug

R
(R ⊕ (��1R ⊕ · · · ⊕ ��k R),R ⊕ � jR).

Moreover, for any simplicial R-algebra A, we have an identification

AQ�1
R (A) × · · · × AQ�k

R (A) ∼= MaphsModR
(AQR(A),��1R ⊕ · · · ⊕ ��k R)

∼= MaphSCRaug

R
(A,R ⊕ (��1R ⊕ · · · ⊕ ��k R))

We obtain maps Hj(CLie(S�1 ∨· · ·∨S�k),R)×
(

AQ�1
R (A) × · · · × AQ�k

R (A)
)

−→ AQj

R(A).
We return to computing the homology of CLie(X) for X a wedge of spheres.

Our combinatorial work in Section 3 and 5 has algebraic consequences. We apply
H̃∗(−,R) to Corollary 8.1 and deduce:

Corollary 8.13. — There is a splitting

H̃∗(CLie(S�1 ∨ · · · ∨ S�k),R)
∼=
>

⊕

n1,...,nk
w∈B(n1,...,nk)

H̃∗(CLie(S(1+�1)n1+···+(1+�k)nk−1),R)

AQR
∗ (R ⊕ (��1R ⊕ · · · ⊕ ��k R))

∼=∨ ∼=
>

⊕

n1,...,nk
w∈B(n1,...,nk)

AQR
∗ (R ⊕ �(1+�1)n1+···+(1+�k)nk−1R)

∼=∨

It is noteworthy that this nontrivial theorem in algebra follows formally from our
discrete Morse theoretic computations. For R = F2, it has been proven by Goerss [Goe90]
by entirely different means.

We start by describing the homology of CLie(S�) for � odd with rational coefficients:

Lemma 8.14. — Let � ≥ 1 be an odd integer. Then

H̃∗(�|�d |� ∧
�d

(S�)∧d,Q) =
{

Q if d = 1,∗ = �

0 else.

Proof. — We give one of several possible proofs. It suffices to show that
H̃∗(�−1|�d |� ∧�d

(S�)∧d,Q) vanishes for d > 1. The natural map �−1|�d |� ∧h�d

(S�)∧d −→ �−1|�d |� ∧�d
(S�)∧d is well-known to induce an isomorphism on rational

homology. Therefore it is enough to prove the lemma with the homotopy orbit space
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replacing the strict orbit space. This was done in [AM99, Aro06]. For the sake of com-
pleteness we will sketch a proof. The space �−1|�d |� ∧h�d

(S�)∧d is a pointed homotopy
colimit of spaces S�d−1

hG , where G is an isotropy group of |�d |�. By an easy Serre spec-
tral sequence argument, such a space is rationally trivial if � is odd and G contains a
transposition. It is clear that every isotropy group of |�d |� contains a transposition. �

For R = Fp with p a prime, the computation is significantly more difficult. The
first-named author and Mahowald computed the homology of the homotopy orbits
D(�|�d |�) ∧h�d

(S�)∧d for � odd by using a bar spectral sequence whose input is the
homology of extended powers as computed by Cohen-Lada-May [CLM76], Araki-Kudo
[KA56], and Dyer-Lashof [DL62].

We can in fact run a related computation, the input of which is the homology
of symmetric powers as computed by Dold [Dol58], Nakaoka [Nak57] [Nak59], and
Milgram [Mil69]. We obtain:

Theorem 9.1. — Let � ≥ 1 be a positive integer, odd if the prime p is odd.

If n is not a power of p, then H̃∗
(
�|�n|� ∧�n

S�n,Fp

)
is trivial.

If n = pa, then H̃∗
(
�|�pa |� ∧�pa S�pa

,Fp

)
has a basis consisting of sequences (i1, . . . , ia),

where i1, . . . , ia are positive integers satisfying:

(1) Each ij is congruent to 0 or 1 modulo 2(p − 1).

(2) For all 1 ≤ j < a we have 1 < ij < pij+1.

(3) We have 1 < ia ≤ (p−1)� (note that if p > 2, then (1) means that the inequality is strict).

The homological degree of (i1, . . . , ia) is i1 + · · · + ia + � + a.

This theorem is proven in our final Section 9. We will now use the EHP sequence
from Theorem 8.5 to express the homology of spaces CLie(S�) with � even in terms of the
homology groups of CLie(Sj) with j odd as computed in Theorem 9.1. We begin on the
level of chains:

Corollary 8.15. — For j ≥ 0 even, there is a cofibre sequence of N-graded simplicial R-modules

�C̃•(CLie(S2j+1),R)
H

> �C̃•(CLie(Sj),R)
E

> C̃•(CLie(Sj+1),R)

� AQR(R ⊕ �2j+1)

∨ H
> � AQR(R ⊕ � jR)

∨ E
> AQR(R ⊕ � j+1R)

∨

We analyse the effect of the EHP sequence on (co)homology with coefficients in
R = Q and R = Fp:

Theorem 8.16. — Let n ≥ 0 be even. For R = Q, or R = Fp with p odd, or R = F2 and

n = 0, the sequence �CLie(S2n+1)
H−→ �CLie(Sn)

E−→ CLie(Sn+1) induces a short exact sequence of

N-graded vector spaces on (reduced) homology and cohomology.
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For R = F2 and n > 0, the extended EHP–sequence �CLie(Sn)
E−→ CLie(Sn+1)

P−→
�2CLie(S2n+1) induces a short exact sequence of N-graded vector spaces on (reduced) homology and

cohomology.

Remark 8.17. — The cohomology of these spaces are in fact shifted Lie algebras,
and for p = 2 and n > 0, the map P∗ sends one fundamental class to the self-bracket of
another fundamental class.

Proof of Theorem 8.16. — Recall from Theorem 8.5 that the EHP–sequences de-
composes into a wedge of cofibre sequences �2|� d

2
|� ∧� d

2

(S2n+1)∧
d
2 → �2|�d |� ∧�d

(Sn)∧d → �|�d |� ∧�d
(Sn+1)∧d . It is enough to check the claim for each of them. For

R = Q, the claim follows from Lemma 8.14.
Now take R = Fp with p odd. If d = pk , the left hand side is contractible and the

claim follows. If d = 2pk , Theorem 9.1 shows that the right hand side has vanishing Fp

homology and cohomology; the claim follows. If d is not of this form, both sides have
vanishing Fp-homology by Theorem 9.1.

For R = F2, we can read of the cohomological case for from Theorem 8.12 and
Corollary B.2. in Goerss’ [Goe90], and the homological case follows by applying the
universal coefficient theorem. Alternatively, we could also prove this claim by unravelling
the effect of the map E on homology in Theorem 8.18 below, and check that it induces
an injection for n > 0. �

Theorem 8.18. — Fix integers �1, . . . , �k ≥ 0 and consider the homology group

H̃∗

(∨

d≥1

�|�d |� ∧
�d

(S�1 ∨ · · · ∨ S�k)∧d,R
)

.

This group is given by the algebraic André-Quillen homology AQR
∗ (R ⊕ (��1R ⊕ · · · ⊕ ��k R)) of

the trivial square zero extension of R by generators x1, . . . , xk in simplicial degrees �1, . . . , �k .

For R = Q, the above homology group has a basis indexed by pairs (e,w), where w ∈
Bk(n1, . . . , nk) is a Lyndon word and e = 0 if |w| :=∑i(1 + �i)ni − 1 is odd and e ∈ {0,1}
if |w| is even. The homological degree of (e,w) is (1 + e)|w| + e and it lives in multi-weight

(n1(1 + e), . . . , nk(1 + e)).

For R = Fp, the above homology group has a basis indexed by sequences (i1, . . . , ia, e,w),

where w ∈ Bk(n1, . . . , nk) is a Lyndon word and e lies in {0, ε}. Here ε = 1 if p is odd and |w|
is even or if |w| = 0. Otherwise, we have ε = 0. The sequence i1, . . . , ia consists of positive integers

satisfying:

(1) Each ij is congruent to 0 or 1 modulo 2(p − 1).

(2) For all 1 ≤ j < a, we have 1 < ij < pij+1.

(3) We have 1 < ia ≤ (p − 1)(1 + e)|w| + ε.
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The homological degree of (i1, . . . , ia, e,w) is i1 + · · · + ia + (1 + e)|w| + e + a and it lives in

multi-weight (n1pa(1 + e), . . . , nkp
a(1 + e)). Note that a = 0 is allowed.

Proof. — The identification with André-Quillen homology follows from Theorem
8.12.

We first examine the case R = Q. For k = 1, and �1 odd, this follows from Lemma
8.14. For �1 even, it is implied by Theorem 8.16. For k > 1, the rational statement follows
from Corollary 8.13.

Now let R = Fp with p odd. If k = 1 and �1 ≥ 1 is odd, the statement fol-
lows from Theorem 9.1. If �1 is even (and thus ε = 1), the short exact sequence as-
serted for p odd in Theorem 8.16 gives a direct sum decomposition H̃∗(CLie(S�),Fp) ∼=
H̃∗+1(CLie(S�+1),Fp) ⊕ H̃∗(CLie(S2�+1),Fp).

By the “odd case”, the first summand has a basis consisting of all sequences
(i1, . . . , ia) satisfying (1), (2), and the condition ia ≤ (p − 1)(�1 + 1). In light of (1), the
condition ia ≤ (p − 1)(�1 + 1)” is equivalent to ia ≤ (p − 1)�1 + 1. We therefore obtain
all sequences with e = 0 appearing in the theorem. The homological degree of this se-
quence in (i1 + · · · + ia + �1 + 1 + a) in H̃∗(CLie(S�+1),Fp) and hence goes to an element
of dimension (i1 + · · · + ia + �1 + a) in H̃∗(CLie(S�+1),Fp).

The second summand has a basis consisting of all sequences (i1, . . . , ia) satisfying
(1), (2), and the condition ia ≤ (p − 1)(2�1 + 1). Using (1) again, this condition is equiv-
alent to ia ≤ (p − 1)2�1 + 1, and we therefore exactly obtain all sequences with e = 1.
The homological degree of the sequence (i1, . . . , ia) is indeed i1 + · · · + ia + 2�1 + 1 + a.
If k > 1, the statement follows by Corollary 8.13.

For R = F2, the second statement for k = 1 and �1 ≥ 1 follows directly from The-
orem 9.1. For �1 = 0, we simply use Corollary 8.10. We deduce the case k > 1 from
Corollary 8.13. �

For p = 2, we obtain an independent proof of Goerss’ computation (cf. [Goe90])
of the algebraic André-Quillen homology of trivial square-zero extensions over F2. Note
that in this case, the proof of Theorem 8.18 does not make any use of the EHP sequence.

We call a sequence (i1, . . . , ia, e,w) allowable with respect to Q or Fp if it satisfies the
conditions in the theorem above (here we use the convention that a = 0 in the rational
case).

This concludes the computation of the homology of strict Young orbits of the
partition complex, and we can finally answer the question we started with by setting
�1 = · · · = �k = 0:

Corollary 8.19. — Let n = n1 + · · · + nk.

The vector space H̃∗(|�n|/�n1×···×�nk
,Q) has a basis consisting of all Q-allowable sequences

(e,w ∈ B(m1, . . . ,mk)) which satisfy mi(1 + e) = ni for all i.

The vector space H̃∗(|�n|/�n1×···×�nk
,Fp) has a basis consisting of all Fp-allowable sequences

(i1, . . . , ia, e,w ∈ B(m1, . . . ,mk)) satisfying mip
a(1 + e) = ni for all i.
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The sequence (i1, . . . , ia, e,w) is in homological degree i1 +· · ·+ ia +(1+ e)|w|+ e+a−2.

Corollary 8.20. — The integral homology groups H̃∗(|�n|/�n1×···×�nk
,Z) have p-primary

torsion only for primes that divide gcd(n1, . . . , nk), and in particular satisfy p ≤ gcd(n1, . . . , nk).

Proof. — This follows directly from Corollary 8.19 and the universal coefficient
theorem. �

8.4. Spherical quotients. — We will provide an answer to the following elementary

Question. — For which n = n1 + · · · + nk is the quotient |�n|/�n1×···×�nk
a wedge

sum of spheres?

For this, we will first carry out a detailed analysis of the spaces �−1|�p|� ∧�p

(S�)∧p ∼= |�p|� ∧�p
S�p−1 for p a prime. We will show that for many values of � and p,

these do not form wedges of spheres. This will allow us to conclude that the above quo-
tients do not form wedges of spheres for many values of ni by our wedge decomposition
in Proposition 8.2. For the remaining values of ni , we do indeed find a wedge of spheres.
We will begin by examining the weight p component |�p|� ∧�p

S�p−1:

Proposition 8.21. — Let p be a prime and � a positive integer.

For p = 2, we have |�2|� ∧�2
S2�−1 ∼= ��RP�−1 (this is well-known).

For p odd and � odd, the quotient |�p|�∧�p
S�p−1 is equivalent to the p-localisation of S�p−1/�p

.

For p odd and � even, the space |�p|�∧�p
S�p−1 is equivalent to the p-localisation of the homotopy

cofibre of the quotient map S�p−1 → S�p−1/�p
.

For p an odd prime, the statement of this lemma is subtle. In order to prove it, we
will first analyse the space |�p|� ∧�p

S�p−1 in terms of homotopy coinvariants.
For this, recall that there is a �p-equivariant homeomorphism S�p−1 ∼= S�−1 ∧

(Sp−1)∧�, where �p acts on Sp−1 via the reduced standard representation, and acts trivially
on S�−1. The fixed-points space (S�p−1)�p is homeomorphic to S�−1. Let S�−1 ↪→ S�p−1 be
the inclusion of fixed points. The key to analysing |�p|� ∧�p

S�p−1 for a general prime p is
the following proposition:

Proposition 8.22. — The following is a homotopy pushout square

|�p|� ∧
h�p

S�−1 > |�p|� ∧
�p

S�−1

|�p|� ∧
h�p

S�p−1
∨

> |�p|� ∧
�p

S�p−1
∨



136 GREGORY Z. ARONE, D. LUKAS B. BRANTNER

Proof. — The homotopy cofibre of the map S�−1 → S�p−1 is S� ∧ (S�(p−1)−1)+,
where �p acts through the reduced regular representation on Sp−1. Taking homotopy
cofibres of the vertical maps gives

|�p|� ∧
h�p

(S� ∧ (S�(p−1)−1)+) → |�p|� ∧
�p

(S� ∧ (S�(p−1)−1)+)

We want to prove that this map is a homotopy equivalence. For this, it is enough to prove
that the following map is an equivalence |�p|� ∧h�p

(S�(p−1)−1)+ → |�p|� ∧�p
(S�(p−1)−1)+.

The �p-space S�(p−1)−1 can be written as a homotopy colimit of sets of the form
�p/G, where G is an isotropy group of S�(p−1)−1. Therefore, it is enough to prove that for
every isotropy group G of S�(p−1)−1, the map |�p|� ∧h�p

(�p/G)+ → |�p|� ∧�p
(�p/G)+

is an equivalence.
Every isotropy group of S�(p−1)−1 is contained in a group of the form �p1 ×· · ·×�pk

,
where p1 + · · · + pk = p, k > 1, and pi > 0. For � = 1, Sp−2 is the boundary of the (p − 1)-
simplex, and it is easy to see that the isotropy groups have this form. For � > 1, we can
argue by induction on �.

Since p is a prime, we have gcd(p1, . . . , pk) = 1 for every decomposition p = p1 +
· · · + pk as above. Theorem 5.10 implies that the action of �p1 × · · · × �pk

on �p is
essentially pointed-free, in the sense that for every subgroup H ⊂ �p1 × · · · × �pk

, the
fixed points space �H

p is contractible. Hence the action of G on �p is essentially pointed-
free, which shows that the map |�p|� ∧

h�p

(�p/G)+ → |�p|� ∧
�p

(�p/G)+, which is the same

as |�p|�/hG → |�p|�/G, is an equivalence. �

Corollary 8.23. — If p is an odd prime, then there is a homotopy cofibration sequence

|�p|� ∧
h�p

S�−1 → |�p|� ∧
h�p

S�p−1 → |�p|� ∧
�p

S�p−1.

Proof. — Consider the upper right corner of the square in Proposition 8.22. Since
p > 2, we have |�p|� ∧

�p

S�−1 ∼= (|�p|�/�p

)∧ S�−1 � ∗ by Corollary 8.10. �

Corollary 8.24. — If p is an odd prime and � ≥ 1, then the space |�p|�∧�p
S�p−1 is p-local.

Proof. — By Corollary 8.23 it is enough to prove that |�p|� ∧h�p
S�−1 and

|�p|� ∧h�p
S�p−1 are p-local. Since � ≥ 1 and p > 2 both of these spaces are simply

connected. Hence, it is enough to show that the integral homology of these spaces is
p-torsion. We will spell out the proof that H̃∗(|�p|� ∧h�p

S�p−1,Z) is p-torsion. The proof
for the other space is similar. Consider the homomorphisms

(8.25) H̃∗(|�p|� ∧
h�p

S�p−1,Z) → H̃∗(|�p|� ∧
h�p−1

S�p−1,Z) → H̃∗(|�p|� ∧
h�p

S�p−1,Z).
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Here the first homomorphism is the transfer in homology associated with the inclusion
�p−1 ↪→ �p, and the second homomorphism is the quotient map. It is well-known that
the composed homomorphism is multiplication by p = |�p/�p−1|. By Theorem 5.10,
|�p| is �p−1-equivariantly equivalent to (�p−1)+ ∧ Sp−3. Therefore |�p|� ∧h�p−1

S�p−1 �
S�p+p−3. The reduced homology of this space is Z in dimension �p + p − 3 and zero in
all other dimensions. On the other hand, by Lemma 8.14 the homology of |�p|� ∧h�p

S�p−1 is all torsion. This implies that the composed homomorphism (8.25) is zero in all
dimensions. Multiplication by p is therefore zero on the group H̃∗(|�p|� ∧h�p

S�p−1,Z). It
follows that it is a p-torsion group. �

We finally prove our description of the weight p component of the spaces CLie(S�):

Proof of Proposition 8.21. — The case p = 2 is well-known (cf. [JTTW63]). Hence
assume that p is an odd prime. We use the cofibre sequence |�p|+∧�p

S�p−1 → S�p−1/�p
→

|�p|� ∧�p
S�p−1. It suffices to show that for � odd, the p-localisation of |�p|+ ∧�p

S�p−1 is
trivial, and for � even, any choice of point in |�p| induces a p-local equivalence S�p−1 →
|�p|+ ∧�p

S�p−1.
Consider the pointed �p-space |�p|+ ∧ S�p−1. It is easy to check that the isotropy

group of every point in this space (aside from the basepoint) is a non-transitive subgroup
of �p. It follows that p does not divide the order of any of the isotropy groups. Thus
for every isotropy group G, the map BG → ∗ induces an isomorphism in Fp-homology.
Therefore, the map |�p|+ ∧h�p

S�p−1 → |�p|+ ∧�p
S�p−1 is a mod p-homology isomor-

phism and hence a p-local isomorphism.
The space |�p|+ ∧h�p

S�p−1 is a pointed homotopy colimit of spaces of the form
(S�p−1)hG, where G is an isotropy group of |�p|. The relevant properties of G are
that (1) p does not divide the order of G and (2) G contains a transposition. Sup-
pose that � is odd. By an easy Serre spectral sequence argument like in Lemma 8.14,
we see that H̃∗

(
(S�p−1)hG;Fp

) ∼= {0}, and so (S�p−1)hG is p-locally trivial. It follows that
|�p|+ ∧ (S�p−1)h�p

is p-locally trivial.
Now suppose � is even. The space

(|�p|+ ∧ S�p−1
)

h�p
is a Thom space of a bun-

dle over |�p|h�p
. Since � is even, this bundle is orientable, and therefore the Thom

isomorphism holds. Any map ∗ → |�p|h�p
is a mod p homology isomorphism, and

by the Thom isomorphism theorem, we obtain a mod p homology isomorphism of
Thom spaces S�p−1 → (|�p|+ ∧ S�p−1

)
h�p

. Here, we have used that since all stabiliser
groups of |�p| are proper, their classifying spaces are p-locally contractible, and we have
|�p|h�p

� |�p|�p
� ∗ by Kozlov’s Corollary 8.10. �

Let p be a prime. For � = 1, |�p|� ∧�p
S�p−1 is contractible by Lemma 8.9. For

� > 1, we have:
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Corollary 8.26. — For � > 2, the space |�p|� ∧�p
S�p−1 is not equivalent to a wedge of

spheres.

For � = 2, it is equivalent to S3 if p = 2 and is contractible if p is odd.

Proof. — For p = 2, we have seen that |�p|� ∧�p
S�p−1 � ��RP�−1. For � = 2 this

space is equivalent to S3. For � > 2 it is not equivalent to a wedge of spheres since its
homology has 2-torsion.

Suppose now that p > 2. By Theorem 9.1, the homology with Fp coeffi-
cients of |�p|� ∧�p

S�p−1 is generated by symbols {i}, where i is an integer with i ≡
0 or 1 (mod 2(p − 1)) and 1 < i < (p − 1)�. The degree of {i} is � + i − 1. It is easy
to see that for � ≤ 2 there are no integers i satisfying these constraints. It follows that
for � ≤ 2 the mod p homology of |�p|� ∧�p

S�p−1 is trivial. Since the space is p-local by
Corollary 8.24, it follows that it is contractible.

For � > 2, there is more than one value of i satisfying the constraints. It follows
that the space is not contractible. Since it is p-local, it is not equivalent to a wedge of
spheres. �

Corollary 8.27. — The quotient |�n|/�n1×···×�nk
is equivalent to a wedge of spheres if and

only if

gcd(n1, . . . , nk) = 1 or p is a prime, n = 2p or 3p, and gcd(n1, . . . , nk) = p.

Proof. — The case gcd(n1, . . . , nk) = 1 was dealt with in Corollary 8.3. In the sec-
ond case, Proposition 8.2 tells us that |�n|/�n1×···×�nk

is equivalent to a wedge sum of
spaces of the form Sn−3 and |�p|� ∧�p

Sn−p−1. Since n = 2p or 3p, n − p = �p where
� = 1,2. By Lemma 8.9 and Corollary 8.26 all these spaces are either equivalent to a
sphere or are contractible.

In all other cases, let p be the smallest prime that divides gcd(n1, . . . , nk). Then p

divides n and n

p
> 3. It follows that |�n|/�n1×···×�nk

has a wedge summand equivalent to
∨

B(
n1
p

,...,
nk
p

) |�p|� ∧�p
S�p−1, where � > 2. By Corollary 8.26 this space is not equivalent to

a wedge of spheres. �

Example 8.28. — To illustrate our results, let us analyse the homotopy type and
the homology groups of |�8|�/�4×�4 . By Proposition 8.2 there is a homotopy equivalence

|�8|�/�4×�4 �
∨

B(4,4)

S5 ∨
∨

B(2,2)

S5/�2 ∨
∨

B(1,1)

(|�4|� ∧ S3)/�4 .

The last factor is contractible by Lemma 8.9. A quick calculation shows that |B(4,4)| = 8
and |B(2,2)| = 1. We already observed that S5/�2

∼= �3RP2. We conclude that there is
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an equivalence

|�8|��4×�4
� �3RP2 ∨

∨

8

S5.

It follows that the reduced homology of |�8|�/�4×�4 is isomorphic to F2 in dimen-
sion 4, to Z8 in dimension 5, and is zero otherwise. This is consistent with computer
calculations by Donau [Don].

9. The Fp-homology of |�n|� ∧�n
(S�)∧n

We fix a prime p. We shall use Bredon homology to prove the following result:

Theorem 9.1. — Let � ≥ 1 be a positive integer, assumed to be odd if the prime p is odd.

If n is not a power of p, then H̃∗
(
�|�n|� ∧�n

S�n,Fp

)
is trivial.

If n = pk, then H̃∗
(
�|�pk |� ∧�

pk
S�pk

,Fp

)
has a basis consisting of sequences (i1, . . . , ik),

where i1, . . . , ik are positive integers satisfying:

(1) Each ij is congruent to 0 or 1 modulo 2(p − 1).

(2) For all 1 ≤ j < k we have 1 < ij < pij+1.

(3) We have 1 < ik ≤ (p−1)� (note that if p > 2, then (1) means that the inequality is strict).

The homological degree of (i1, . . . , ik) is i1 + · · · + ik + � + k.

Throughout this section, we will write H̃∗(X) = H̃∗(X,Fp) for the reduced singular
Fp-homology.

We begin by reviewing the definition and basic properties of Bredon homology.
Suppose that ν is a Mackey functor for a finite group G. Let X be a simplicial G-set. The
Bredon homology groups H̃

Br
∗ (X;ν) of X with coefficients in ν are defined as the homology

groups of the simplicial abelian group obtained by applying ν to X degree-wise. If X
is a pointed G-set, then we define the reduced Bredon homology of X as the quotient
H̃

Br
∗ (X;ν) := H̃

Br
∗ (X;ν)/H̃

Br
∗ (∗;ν) of unreduced Bredon homology of X by the Bredon

homology of the basepoint.
If ν∗ is a graded Mackey functor, then the Bredon homology is bigraded. In this

case, we define:

Definition 9.2. — The Euler characteristic χ∗ of a pointed simplicial G-set X with respect to

a graded Mackey functor ν∗ is defined as the following sequence of integers:

χn =
∑

i

(−1)i rk
(

H̃
Br
i (X;νn)

)

Informally speaking, we take Euler characteristic “in the Bredon direction”. We extend this notion in the

evident way to bigraded submodules of H̃
Br
∗ (X;ν∗).
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We will now consider the graded Mackey functor μ∗ which is defined on �n-sets
by the formula

μ∗(S) = H̃∗(S�n ∧�n
S+).

We observe that if H is a subgroup of �n, then μ∗(�n/H) ∼= H̃∗(S�n/H).
If W is a general simplicial �n-set, then there is a well-known spectral sequence of

signature

H̃
Br
s (W;μt) ⇒ H̃s+t(S�n ∧�n

W).

We will see below that for W = |�n|�, the spectral sequence collapses at E2, and we may
therefore focus on calculating the Bredon homology groups H̃

Br
∗ (|�n|�;μ∗).

The next proposition says that the Mackey functor μ∗ satisfies the hypotheses
needed for the main theorem of [ADL16] to apply. Let CG(H) denote the centraliser
of the subgroup H in G.

Proposition 9.3. — The Mackey functor μ∗(S) = H̃∗(S�n ∧�n
S+) has the following proper-

ties:

(1) If Z is a �n-set whose cardinality is coprime to p and S is any �n-set, then the composed

homomorphism μ∗(S)
tr→ μ∗(S × Z) → μ∗(S) is an isomorphism.

(2) For every elementary abelian subgroup D ⊂ �n that acts freely and non-transitively on the

set {1, . . . , n}, the kernel of C�n
(D) → π0CGLn(R)(D) acts trivially on μ∗(�n/D).

(3) For p > 2 odd and D as in (2), any odd involution in C�n
(D) acts on μ∗(�n/D) as

multiplication by (−1).

Proof. — The proof is similar to [ADL16, Proposition 11.4]. Since homology is
taken with Fp coefficients, the Mackey functor μ∗ takes values in Fp-vector spaces. It

is well-known that the composite homomorphism μ∗(S)
tr→ μ∗(S × Z) → μ∗(S) is, in

general, multiplication by the cardinality of Z. If the cardinality is coprime to p, then the
homomorphism is an isomorphism. This proves (1).

For (2), let σ ∈ ker(C�n
(D) → π0CGLn(R)(D)). Then σ is an element of �n, σ cen-

tralises D, and the linear automorphism of Rn induced by σ can be connected to the
identity by a path that goes through linear transformations that centralise the action of
D. It follows that σ acts on S�n by a map that is D-equivariantly homotopic to the identity.
Therefore, σ acts on S�n/D by a map that is homotopic to the identity. In particular, it
acts trivially on μ∗(�n/D) = H̃∗(S�n/D). (See the proof of [ADL16, Proposition 11.4] for
a very similar argument spelled out in more detail.)

Finally, for (3) suppose that p is odd and τ ∈ �n is an odd permutation of order 2
centralising D. We need to show that τ acts on H̃∗(S�n/D) as multiplication by (−1). As
explained in the last part of the proof of [ADL16, Proposition 11.4], an involution τ on
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a space W acts by (−1) on the homology of W (with coefficients in a group where 2 is
invertible) if and only if (τ −1) is an isomorphism on homology. This in turn is equivalent
to requiring that (τ − 1) induces a quasi-isomorphism on the chain complex C̃∗(W) of
reduced singular chains with coefficients in Fp on W. We apply this to the case W = S�n/D.
There is a natural homotopy equivalence between C̃∗(S�n/D) and a homotopy colimit of
chain complexes of the form C̃∗((S�n)A), where A ranges over subgroups of D. Using
that � is odd, it is not difficult to show that τ acts by (−1) on the homology of each
fixed point space (S�n)A. It follows that τ − 1 induces a quasi-isomorphism on each chain
complex C̃∗((S�n)A) and therefore it induces a quasi-isomorphism on C̃∗(S�n/D). This in
turn implies that τ acts by (−1) on H̃∗(S�n/D). �

By [ADL16, Lemma 3.8 and Theorem 1.1] it follows that H̃
Br
s (|�n|�;μt) = 0 un-

less n = pk for some positive integer k and s = k −1. Therefore H̃∗(S�n ∧�n
|�n|�) vanishes

unless n is a power of p. In the case n = pk the spectral sequence collapses, and there is an
isomorphism

H̃∗+k−1(S�pk ∧�
pk

|�pk |�) ∼= H̃
Br
k−1(|�pk |�;μ∗).

We will therefore focus on calculating the Bredon homology group H̃
Br
k−1(|�pk |�;μ∗).

Abstractly, this group can be described in terms of the Steinberg module Stk
∼=

H̃k−1(|BT(Fk
p)|�,Z) as μ∗(�pk/Fk

p) ⊗Z[GLk(Fp)] Stk , cf. [ADL16, Corollary 1.2]. To get a
concrete description, however, we will implement a different approach and use an ex-
plicit chain complex, which we will now describe.

Define a reduced version μ̃∗ of μ∗ on pointed sets by setting μ̃∗(S) = H̃∗(S�n ∧�n
S)

for S a pointed �n-set. To calculate the reduced Bredon homology of |�pk |�, write it as the
geometric realisation of a pointed simplicial set with an action of �pk (we will describe an
explicit model below). Applying μ̃∗ levelwise to |�pk |� yields a graded simplicial abelian
group. We refer to the associated normalised chain complex as the Bredon chains on
|�pk |�. The bigraded homology groups of this chain complex are precisely the Bredon
homology groups H̃

Br
∗ (|�pk |�;μ∗).

Since the Bredon homology is concentrated in the single degree (k −1), it is essen-
tially determined by the Euler characteristic in the Bredon direction (cf. Definition 9.2).

To determine the Euler characteristic, we will analyse μ̃∗(��
pk,i

), where ��
pk,i

is the
quotient of the set of i-simplices of |�pk |� by the subset of degenerate simplices. We will
show that μ̃∗(��

pk,i
) splits as a direct sum, and that most of the summands can be arranged

in isomorphic pairs in adjacent dimensions, so as to cancel out and contribute nothing to
the Euler characteristic. Finally, we will calculate the Euler characteristic of the complex
obtained from summands that are not cancelled out. This approach is essentially the same
as was taken in [AM99] towards calculating the homology of the homotopy orbit space
S�pk ∧h�

pk
|�pk |�. However the situation in the present paper is simpler, as we are only

calculating the Euler characteristic and therefore do not need to determine the actual
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boundary homomorphism between the various summands in our decomposition. Our
simplified approach can in fact also be implemented in the case of homotopy orbits, but
we will not pursue this here.

The set ��
pk,i

is the wedge sum of sets of the form �pk/H+, where H ranges over a
set of representatives of stabilisers of nondegenerate i-simplices of |�pk |�. It follows that
μ̃∗(��

pk,i
) is isomorphic to a corresponding direct sum of groups H̃∗(S�pk

/H). Isotropy
groups of ��

pk,i
are products of wreath products of symmetric groups (see Section 9.2 be-

low for a more precise statement). Therefore, before describing H̃∗(S�pk

/H) for a general
isotropy group H, we review some results about the homology of X∧n/�n

for general X.

9.1. Homology of symmetric smash products. — Before describing the homology, let us
recall the very useful general fact, due to Dold [Dol58], that the homology of a symmet-
ric (smash) product of a pointed space X depends only on homology of X. Dold proved
the result for integral homology. We need a version of it for homology with mod p co-
efficients. A proof can be found in Bousfield’s unpublished manuscript [Bou67], where
an explicit description of the mod p homology of symmetric products is given. For the
reader’s convenience, we shall include a proof along the lines of Dold’s argument.

Lemma 9.4. — The Fp-homology groups of X∧n/�n
only depend on the homology of the pointed

space X. More precisely, there exists an endofunctor G of the category of non-negatively graded Fp-vector

spaces such that H̃∗(X∧n/�n
,Fp) is isomorphic to G(H̃∗(X)), naturally in X.

Proof. — For a set S, let FFp
(S) denote the Fp-vector space with basis S. If S is

pointed, let F̃Fp
(S) be the quotient of FFp

(S) by the subspace generated by the basepoint.
Note that there is a natural isomorphism of vector spaces F̃Fp

(S∧n/�n
) ∼= (F̃Fp

(S))⊗n
�n

.
Let Sing•(X) be the pointed simplicial set of singular simplices of X. Let C•(X) =

FFp
(Sing•(X)) be the simplicial Fp-vector space generated by X• and write C̃•(X) =

F̃Fp
(Sing•(X)) for the reduced Fp-chains on X. The reduced homology of X∧n/�n

is the
homology of the simplicial vector space C̃•(X∧n/�n

), and this simplicial vector space is
isomorphic to C̃•(X)⊗n

�n
.

Let N be the normalised chain complex functor from the category of simplicial Fp-
vector spaces to the category of non-negative chain complexes over Fp. Let � be the in-
verse of N provided by the Dold-Kan correspondence. Then H̃∗(X∧n/�n

) is naturally iso-

morphic to H∗
(

N
(
(�NC̃•(X))⊗n

�n

))
. It follows that the functor X �→ H̃∗(X∧n/�n

) from
pointed spaces to graded vector spaces factors as the composition of the reduced chain
complex functor X �→ NC̃•(X) = C̃∗(X), and the functor C �→ H∗

(
N
(
(�C)⊗n

�n

))
from

chain complexes to graded vector spaces.
Clearly, this is a homotopy functor. Therefore, it factors through the homotopy cat-

egory of non-negative chain complexes over Fp. It is well known that this homotopy cate-
gory is equivalent to the category of graded vector spaces, and H∗ induces the equivalence



THE ACTION OF YOUNG SUBGROUPS ON THE PARTITION COMPLEX 143

of categories. Therefore, H̃∗(X∧n/�n
) is naturally isomorphic to H∗

(
N
(
(�H̃∗(X))⊗n

�n

))
,

where we consider H̃∗(X) as a chain complex with zero differential. Setting G(−) =
H∗
(
N
(
(�−)⊗n

�n

))
proves the result. �

It follows that in order to describe the homology of X∧n/�n
for general X, it is

enough to complete this computation for X a wedge of spheres. We will describe the
direct sum

⊕
n≥0 H̃∗(X∧n/�n

) as a bigraded vector space.

Definition 9.5. — For every integer k ≥ 0, we define an endofunctor Fk of the category of graded

Fp-vector spaces as follows:

For k = 0, the functor F0 is the identity.

For k > 0, the graded vector space Fk(V) is generated by symbols of the form (i1, . . . , ik;v)

where v is an element of V, and i1, . . . , ik are positive integers satisfying the following conditions:

(1) Each ij is congruent to 0 or 1 mod 2(p − 1),

(2) ij ≥ pij+1 for all 1 ≤ j < k,

(3) If p is odd, then pi1 < (p − 1)(|v| + i1 + · · · + ik), and if p = 2, then pi1 ≤ (p −
1)(|v| + i1 + · · · + ik). (This convention at p = 2 is slightly non-standard, we will

explain the reason for it below.),

(4) We have ij �= 1 for all 1 ≤ j ≤ k.

These symbols are linear in v, i.e. satisfy (i1, . . . , ik; u) + (i1, . . . , ik;v) = (i1, . . . , ik; u + v).

If v is homogeneous of degree |v|, then (i1, . . . , ik;v) is homogeneous of degree i1 + · · · + ik + |v|.
Note that Fk is a well-defined endofunctor of graded vector spaces preserving di-

rect sums.
Suppose V is a graded vector space. Then

⊕
k≥0 Fk(V) is a graded vector space.

We endow it with a second grading, which we call “weight”: elements of Fk(V) are given
weight pk .

For a graded vector space V, define S(V) to be the free graded symmetric algebra
on V if p is odd (with Koszul sign rule), and the free exterior algebra on V if p = 2. Any
grading of V extends to a grading of S(V) in the usual way: the degree of a product is
the sum of degrees. Let Sn(V) be the direct summand of S(V) consisting of products of
exactly n elements of V.

Proposition 9.6. — There is an isomorphism of bigraded vector spaces

⊕

n≥0

H̃∗(X∧n/�n
) ∼= S

(
⊕

k≥0

FkH̃∗(X)

)

where H̃∗(X∧n/�n
) corresponds to elements of weight n.
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Remark 9.7. — This is not an isomorphism of algebras. Information about the
algebra structure on

⊕
n≥0 H̃∗(X∧n/�n

) can be found, for example, in the paper of Mil-
gram [Mil69].

Remark 9.8. — For odd primes, our conventions follow closely those of Nakaoka
[Nak59]. When p = 2, our conventions differ in that we include in Fk elements
(i1, . . . , ik;v) satisfying the equality i1 = i2 + · · · + ik + |v|. In this case, the element
(i1, . . . , ik;v) stands in for the square of the element (i2, . . . , ik;v). We are using the
evident isomorphism of graded vector spaces between the polynomial algebra P(x) and
the exterior algebra �(x1, x2, x4, . . . , x2i , . . . , ). This is also why we defined S(V) to be
the exterior rather than polynomial algebra when p = 2. The purpose of this convention
is the following: when V is a vector space with one generator, assumed to be odd if p �= 2
(for us, V will be the reduced homology of a sphere), we want homogeneous summands
Sn(V) to be null for n > 1. All this is for the sake of Lemma 9.16 below.

Proof of Proposition 9.6. — The proposition is well-known. The case when X is a
sphere can be read from Nakaoka’s [Nak59], with the aforementioned change of con-
ventions at the prime 2. (Nakaoka’s paper is written in terms of cohomology, but as far
as vector space dimension goes, there is no difference). It is easy to see that both sides
of the claimed equation take wedge sums in the variable X to tensor products. It follows
that the formula is valid for X a wedge of spheres. By Lemma 9.4, the result holds for a
general space X. One can also read off the result from [Bou67] or [Mil69]. �

Now we can write an explicit formula for H̃∗(X∧n/�n
). For this, we first introduce

some notation:

Definition 9.9. — A p-partition of an integer n is a partition into components of sizes that are

powers of the prime p. A p-partition is encoded by a sequence (a0, a1, . . .) of non-negative integers (almost

all of them zero) with n =∑k≥0 akp
k. We write P(n) for the set of p-partitions of n.

The following statement is an immediate consequence of Proposition 9.6.

Proposition 9.10. — There is an isomorphism, where the direct sum is indexed on p-partitions

of n

H̃∗(X∧n/�n
) ∼=

⊕

(a0,a1,...)∈P(n)

⊗

k≥0

Sak
(FkH̃∗(X)).

9.2. The homology of orbit spaces of isotropy groups. — Our next task is to describe
H̃∗(X∧n/H) for H an isotropy group of the suspended partition complex |�n|� and X
a pointed space.



THE ACTION OF YOUNG SUBGROUPS ON THE PARTITION COMPLEX 145

We begin by reviewing the structure of isotropy groups of simplices in |�n|� for
n > 1. Write Pn for the poset of all partitions of {1, . . . , n}. Similarly as in Section 2.9, the
space |�n|� arises as the realisation of the following simplicial set:

Definition 9.11. — The simplicial model of |�n|� is given by the quotient N•(Pn −
{0̂})/N•(Pn−{0̂,1̂}) of the nerve of the poset of partitions which are not initial by the nerve of the sub-

poset of partitions which are neither initial nor final.

This is a pointed simplicial �n-set. The nondegenerate non-basepoint i-simplices
of |�n|� are in bijective correspondence with strictly increasing chains of partitions

σ = [0̂ < x1 < · · · < xi < 1̂]
In particular, this means that there is a single non-basepoint zero-simplex. Notice that
for every equivalence class of xi , the chain σ induces a chain of partitions of this class of
length (i − 1). We call these subchains the restrictions of σ to the equivalence classes of xi .

The symmetric group �n permutes such chains of partitions σ . We say that two
chains σ,σ ′ are of the same type if they are in the same orbit under this action. More
generally, we say that two chains of partitions of two possibly different sets are of the same
type if there is a bijection between the sets that takes one of the chains to the other.

Let σ = [0̂ < x1 < · · · < xi < 1̂] be an increasing chain of partitions of the set
{1, . . . , n} as above. Write Kσ ⊂ �n for the isotropy group of this chain. Then Kσ per-
mutes the equivalence classes of xi (the coarsest partition in the chain). Two equivalence
classes of xi are in the same orbit of Kσ if and only if the restrictions of σ to these two
equivalence classes are of the same type. Let us list the different types of chains that occur
among the restrictions of σ to the classes of xi as type 1, type 2, etc. Let Kj denote the
isotropy group of a chain of type j. Suppose that among the various restrictions of σ to
the classes of xi , there are exactly ij many classes of type j.

Then there is an isomorphism

Kσ
∼=
∏

j

Kj 
 �ij .

By induction, this identifies Kσ with a product of iterated wreath products of symmetric
groups. Furthermore, suppose that each xi-class of type j has cardinality nj . Then we have
an isomorphism

X∧n/Kσ
∼=
∧

j

(X∧nj /Kj
)∧ij /�ij

for any pointed space X.
Applying the Künneth formula and Proposition 9.10, we see that the homology

groups of the space X∧n/Kσ
split as a direct sum indexed by simultaneous choices of p-

partitions of ij for each type j. Equivalently, the summands are indexed by isomorphism
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classes of chains

[0̂ < x1 < · · · < xi ≤ ei+1 ≤ 1̂]

where ei+1 is a coarsening of xi with the following two properties: each ei+1-class contains
a power of p many xi-classes, and the restrictions of σ to any two xi-classes that lie in the
same ei+1-class are of the same type. The desire to iterate this procedure motivates the
following definition:

Definition 9.12. — Let σ = [0̂ < x1 < · · · < xi < 1̂] be a strictly increasing chain of parti-

tions of {1, . . . , n}. Set x0 = 0̂, xi+1 = 1̂. A p-enhancement of σ consists of a refining chain

[0̂ ≤ e1 ≤ x1 ≤ · · · ≤ ei ≤ xi ≤ ei+1 ≤ 1̂]

for which the following two conditions hold true for k = 0, . . . , i:

(1) Each equivalence class of ek+1 contains a power of p many xk-classes.

(2) The restriction of the chain [0̂ ≤ e1 ≤ x1 ≤ · · · ≤ ei ≤ xi ≤ ei+1 ≤ 1̂] to any two xk-

classes lying in the same ek+1-class are isomorphic.

We say that two p-enhancements of σ are isomorphic if they lie in the same orbit
under the action of Kσ . We will primarily be concerned with isomorphism classes of
enhancements, which we can use to define endofunctors of graded vector spaces:

Definition 9.13. — Let � = [0̂ ≤ e1 ≤ x1 ≤ · · · ≤ ei ≤ xi ≤ ei+1 ≤ 1̂] be a p-enhancement

of a chain of partitions σ = [0̂ < x1 < · · · < xi < 1̂] of the set {1, . . . , n}. Write [�] for its isomor-

phism class.

Given a graded vector space V, we define a graded vector space [�](V) by the following recursion:

• If i = 0, then � = [0̂ ≤ e1 ≤ 1̂], so the isomorphism type of � is determined by the isomor-

phism type of e1, i.e. a p-partition of n. Let the p-partition be given by (a0, a1, . . . ). Then we

define [�](V) :=⊗j Saj
(Fj(V)).

• If i > 0, we first list the isomorphism types of the chains obtained by restricting � to the classes

of ei+1 as type 1, type 2, . . . . Let at be the number of classes of ei+1 having type t. Assume

that each ei+1-class of type t contains exactly pbt many xi-classes. The restrictions of � to

all xi-classes contained in ei+1-classes of same type t must be pairwise isomorphic. Each of

these isomorphic restrictions corresponding to type t can be thought of as a p-enhancement of

a chain of length (i − 1). Write [�t] for the resulting class of p-enhancements.

We then define [�](V) :=⊗t Sat
(Fbt

([�t](V))).

The discussion above together with induction lead to the following result:
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Proposition 9.14. — Assume that σ = [0̂ < x1 < · · · < xi < 1̂] is a strictly increasing chain

of partitions of {1, . . . , n}. Let Kσ be the isotropy group of σ and write E[σ ] for the set of isomorphism

classes of p-enhancements of σ . Given any pointed space X, there is an isomorphism

H̃∗(X∧n/Kσ
) ∼=

⊕

[�]∈E[σ ]
[�](H̃∗(X)).

Proof. — We list the different types of chains that occur among restrictions of σ

to classes of xi as type 1, type 2, . . . . For each type j, we assume that there are ij many
xi-classes of type j, and that each of them has cardinality nj . We again write Kj for the
isotropy group of any chain of type j.

The discussion preceding Definition 9.12 and Proposition 9.10 together imply

H̃∗(X∧n/Kσ
) ∼=
⊗

j

H̃∗((X∧nj/Kj
)∧ij /�ij

)

∼=
⊕

{(aj

0,a
j

1,...)∈P(ij )}j

⎛

⎝
⊗

j,k

S
a

j

k
(FkH̃∗(X∧nj /Kj

))

⎞

⎠

For each j, we pick a chain σj of type j which is obtained by restricting the chain σ

to an xi-class. By induction and additivity of each functor Fk , we obtain an isomorphism

H̃∗(X∧n/Kσ
) ∼=

⊕

{(aj

0,a
j

1,...)∈P(ij )}j

⎛

⎝
⊗

j,k

S
a

j

k

⎛

⎝
⊕

[�j ]∈E[σj ]
Fk

([�j]
(
H̃∗(X,Fp)

))
⎞

⎠

⎞

⎠

We can expand the functors S
a

j

k
above and obtain an isomorphism to the following

vector space:

⊕

{(aj

0,a
j

1,...)∈P(ij )}j

{bj

k,1+···+b
j

k,s
j
k

=a
j

k | b
j

k,s>0 }j,k

{[�j

k,1],...,[�j

k,s
j
k

]∈E[σj ] distinct }j,k

(
⊗

j,k,s

S
b

j

k,s

(
Fk

(
[�j

k,s]
(
H̃∗(X,Fp)

)))
)

The indexing set of this sum is in fact just E[σ ].
Indeed, specifying a p-enhancement � of σ up to isomorphism is equivalent to the

following data:

(1) A p-partition
∑

a
j

kp
k = ij for each type j of chains obtained by restricting σ to

xi-classes. This corresponds to partitions ei+1 ≥ xi such that there are exactly a
j

k

many ei+1-classes that contain pk many xi-classes of type j, up to isomorphism.
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(2) For each j, k a collection of a
j

k many p-enhancements [�j

k,1], . . . , [�j

k,s
j

k

] of

σj up to isomorphism. Write b
j

k,s for the multiplicity of [�j

k,s]. Each of these
a

j

k many p-enhancements induces a simultaneous p-enhancement of some pk

many xi-classes of type j lying in the same ei+1-class.

We restrict attention to the summand above corresponding to the isomorphism class of a
given p-enhancement � = [0̂ ≤ e1 ≤ x1 ≤ · · · ≤ ei ≤ xi ≤ ei+1 ≤ 1̂] of σ .

The triples j, k, s indexing the inner tensor product above then corresponds exactly
to the possible types t of restrictions of � to ei+1-classes S. Here j encodes the type of the
restriction of σ to any xi-class in S, the number k is chosen so that S contains pk many
xi-classes, and the index s ∈ {1, . . . , s

j

k} specifies the type of the restriction of � to any of
the xi-classes in S. There are b

k,s
j many ei+1-classes of this type t, and the claim follows

from the second clause of Definition 9.13. �

Before coming back to our computation of Bredon homology, we need two rather
easy observations.

For the first, assume we are given a chain of partitions σ = [0̂ < x1 < · · · <

xi < 1̂] and a p-enhancement � = [0̂ ≤ e1 ≤ x1 ≤ · · · ≤ ei ≤ xi ≤ ei+1 ≤ 1̂]. Sup-
pose that for some 1 ≤ j ≤ i, we have ej = xj = ej+1. Omitting xj from the chain,
we get the chain σj = [0̂ < x1 < · · · < xj−1 < xj+1 < · · · < 1̂] and a p-enhancement
�j = [0̂ ≤ e1 ≤ x1 ≤ · · · ≤ xj−1 ≤ ej ≤ xj+1 ≤ · · · ≤ 1̂].

Lemma 9.15. — There is an isomorphism [�](H̃∗(X,Fp)) ∼= [�j](H̃∗(X,Fp)).

The second observation covers the case 0̂ = e1:

Lemma 9.16. — Let � = [0̂ ≤ e1 ≤ x1 ≤ · · · ≤ ei ≤ xi ≤ ei+1 ≤ 1̂] be as before. Let � be

an integer, assumed to be odd if p �= 2. If e1 = 0̂, then [�](H̃∗(S�),Fp) is the zero vector space.

9.3. Calculation of the Bredon homology. — We are now ready to calculate
H̃

Br
∗ (|�n|�;μ∗). Recall that this group is computed as the homology of the normalised

chain complex of the simplicial abelian group obtained by applying μ̃∗ levelwise to the
simplicial model of |�n|� from Definition 9.11.

In simplicial degree i, this chain complex is isomorphic to the direct sum of
H̃∗(S�n/Kσ

), where Kσ ranges over a set of representatives of isotropy groups of non-
degenerate, non-basepoint i-simplices of |�n|�, i.e. strictly increasing chains of partitions
of {1, . . . , n}.

Let Kσ be the isotropy group of σ = [0̂ < x1 < · · · < xi < 1̂]. Proposition 9.14
decomposes H̃∗(S�n/Kσ

) even further and identifies it with a direct sum indexed by iso-
morphism types of p-enhancements of σ .
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Our next task is to arrange most of the summands in isomorphic pairs, so that they
“cancel out”. For this, we shall distinguish between four kinds of (isomorphism classes of)
p-enhancements.

Definition 9.17. — Let σ = [0̂ < x1 < · · · < xi < 1̂] be a chain of partitions. By convention,

we set x0 = 0̂ and xi+1 = 1̂. A p-enhancement � = [0̂ ≤ e1 ≤ x1 ≤ · · · ≤ ei ≤ xi ≤ ei+1 ≤ 1̂] is

said to be

(1) negligible, if e1 = 0̂.

(2) matching up if there exists a 1 ≤ j ≤ i + 1 such that ej < xj , and for the smallest such j,

there is a strict inequality xj−1 < ej .

(3) matching down if there exists a 1 < j ≤ i + 1 such that ej < xj , and for the smallest such j,

there is an equality xj−1 = ej .

(4) pure if ej = xj for all 1 ≤ j ≤ i + 1.

Clearly, these notions are invariant under the action of �n. The following observa-
tion is key:

Proposition 9.18. — For all 0 ≤ i ≤ n − 3, there is a bijective correspondence between iso-

morphism types of p-enhancements of chains of length i that are matching up and isomorphism types of

p-enhancements of chains of length i + 1 that are matching down. This bijection induces an isomorphism

of corresponding summands inside the groups H̃∗(S�n/Kσ
) attached to chains σ .

Proof. — Let 0 ≤ i ≤ n−3. Let σ = [0̂ < x1 < · · · < xi < 1̂] be a chain of partitions
of length i, and let � = [0̂ ≤ e1 ≤ x1 ≤ · · · ≤ ei ≤ xi ≤ ei+1 ≤ 1̂] be a p-enhancement of
σ that is matching up. By definition, this means that there is a 1 ≤ j ≤ i + 1 such that
xj−1 < ej < xj , and such that for all 0 ≤ j ′ < j, we have ej′ = xj′ .

We define a chain σ+ of length i + 1 as σ+ = [0̂ < x1 < · · · < xj−1 < ej < xj < · · · <
xi < 1̂]. Let �+ be the p-enhancement of σ+ given by

�+ = [0̂ ≤ e1 ≤ x1 ≤ · · · ≤ xj−1 ≤ ej ≤ ej ≤ ej ≤ xj < · · · ≤ ei ≤ xi ≤ ei+1 ≤ 1̂]
Clearly, �+ is a matching down enhancement of σ+, and this procedure induces
the desired bijection. The corresponding homology summands are isomorphic by
Lemma 9.15. �

Proposition 9.19. — The Euler characteristic of the Bredon homology H̃
Br
∗ (|�n|�; μ̃∗) is the

same as the Euler characteristic of the bigraded submodule spanned by all summands corresponding to

pure p-enhancements.

Proof. — The negligible summands vanish by Lemma 9.16. The matching up and
matching down summands cancel out by Proposition 9.18. The only summands left are
the pure ones. �
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In order to examine the pure summands in H̃∗(S�n/Kσ
), we introduce the following

notation:

Definition 9.20. — A partition is regular if all its equivalence classes have the same size. More

generally, a chain of partitions is regular if each partition in the chain is regular.

Lemma 9.21. — A chain of partitions has a unique pure p-enhancement if and only if is a

regular chain of partitions of a power of p. Otherwise it has no pure p-enhancements.

Proof. — Pure p-enhancements are chains of the form � = [0̂ < e1 = x1 < · · · <

ei = xi < ei+1 = 1̂] where ej = xj for all 1 ≤ j ≤ i + 1. Therefore, the ej ’s are determined by
the xj ’s and a chain can have at most one pure enhancement.

Suppose � is pure. In particular, ei+1 = 1̂. Thus, ei+1 is the indiscrete partition
with a single component of size n. By definition of p-enhancements, this implies that
the number of equivalence classes of xi is a power of p, and that the restrictions of �

to the equivalence classes of xi are all pairwise isomorphic. Moreover, the assumption
ej = xj for all 1 ≤ j ≤ i implies that the restriction of � to any equivalence class of xi is
again pure. By induction on the length of the chain, the size of each equivalence class
of xi is a power of p, so n must be a power of p as well. Induction shows that the chain
σ = [0̂ < x1 < · · · < xi < 1̂] is regular as all xi are pairwise isomorphic.

On the other hand, it is easy to check that if σ = [0̂ < x1 < · · · < xi < 1̂] is a
regular chain of partitions of a set of size pk , then setting ej = xj for all j defines a pure
p-enhancement of σ . �

In particular, if n is not a power of p, then there are no pure summands in
H̃∗(S�n/Kσ

), where Kσ is any isotropy group of |�n|�. We obtain the following (super-
fluous) corollary.

Corollary 9.22. — If n is not a power of p, the Euler characteristic of H̃
Br
∗ (|�n|�; μ̃∗) is zero.

Of course, a much stronger statement is true: if n is not a power of p, then all
the Bredon homology groups vanish by [ADL16] and Proposition 9.3 (cf. the remark
following Proposition 9.3).

It remains to calculate the Euler characteristic when n = pk .

Proof of Theorem 9.1. — Let n = pk be a power of p. By Proposition 9.19, it suffices
to calculate the alternating sum (with respect to the Bredon grading) of the dimensions of
the pure summands and check that it matches the dimensions asserted in the statement
of the theorem.

By Lemma 9.21 there is a unique pure summand for each isomorphism type of
regular chains of partitions of {1, . . . , pk}. Such chains are in bijective correspondence
with ordered partitions of k, or equivalently with subsets of {1, . . . , k − 1}.
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We will now make the pure summands more explicit. Given an ordered partition
(k1, . . . , kr) of k, we pick a regular chain of partitions σ(k1,...,kr) representing the corre-
sponding isomorphism class. There is a unique pure p-enhancement � of σ , and the
corresponding pure summand [�](H̃∗(S�)) inside H̃∗(S�n/Kσ

) (sitting in Bredon degree
r − 1) is readily seen to be given by Fk1 . . .Fkr

(H̃∗(S�)). The Bredon complex can there-
fore be depicted as:

dim 0 1 . . . k

FkH̃∗(S�)
⊕

k1+k2=k

Fk1Fk2H̃∗(S�) . . . F1 . . .F1H̃∗(S�)

Consider a typical pure summand, of the form Fk1Fk2 . . .Fkr
H̃∗(S�) where k1 +

· · · + kr = k.
An easy combinatorial check reveals that this summand has a basis consisting of

sequences (i1, . . . , ik) satisfying the following conditions:

(1) Each ij is congruent to 0 or 1 mod 2(p − 1).
(2) ij ≥ pij+1 for all 1 ≤ j < k with j �= k1, k1 + k2, . . ..
(3) If p is odd, then pik1+···+kt+1 < (p − 1)(� + ik1+···+kt+1 + · · · + ik1+···+kr

) for t =
0, . . . , r − 1.
If p = 2, we have pik1+···+kt+1 ≤ (p − 1)(� + ik1+···+kt+1 + · · · + ik1+···+kr

) for t =
0, . . . , r − 1.

(4) ij �= 1 for all 1 ≤ j ≤ k.

Here we suppressed the canonical generator of H̃∗(S�) from our notation.
We now fix a sequence (i1, . . . , ik) which satisfies the four conditions above and

moreover satisfies

ij < pij+1 for j = k1, k1 + k2, . . . .

We observe that (i1, . . . , ik) also defines a unique basis element in Fm1 . . .Fms
for any

ordered partition (m1, . . . ,ms) of k which refines the ordered partition (k1, . . . , kr). Here,
we have used that condition (2) can be rephrased as ij − (p − 1)ij+1 ≥ ij+1. Note that any
basis element of a pure summand Fm1 . . .Fms

arises uniquely in this way.
The collection of partitions (m1, . . . ,ms) of length s refining (k1, . . . , kr) lies in bi-

jection with the collection of subsets S of {1, . . . , k− r} of size s− r. The contribution from
the various basis elements corresponding to the given sequence (i1, . . . , ik) to the Euler
characteristic in Bredon direction (in the relevant homological degree i1 + · · · + ik + �) is
therefore given by

k∑

s=r

(−1)s−1

(
k − r

s − r

)

= (−1)r−1
k−r∑

s=0

(−1)s

(
k − r

s

)

If k − r > 0, then this alternating sum of binomial coefficients is well-known to vanish.



152 GREGORY Z. ARONE, D. LUKAS B. BRANTNER

For k = r, this sum is equal to (−1)k−1. This corresponds to the case where the
sequence (i1, . . . , ik) lies in F1 . . .F1 and violates condition (2) for every possible value of j.
More precisely, condition (2) becomes empty and ij < pij+1 for all j.

Hence the Euler characteristic exactly counts the number of sequences (i1, . . . , ik)

satisfying:

(1) Each ij is congruent to 0 or 1 mod 2(p − 1).
(2) ij < pij+1 for all 1 ≤ j < k

(3) If p is odd, then pij < (p − 1)(� + ij + · · · + ik) for j = 1, . . . , k.
If p = 2, we have pij ≤ (p − 1)(� + ij + · · · + ik) for j = 1, . . . , k.

(4) ij �= 1 for all 1 ≤ j ≤ k.

It is now evident that these conditions are equivalent to the conditions appearing in the
statement of the theorem. �
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